1 Thread
Irgendwie hab ich das Gefühl, das hier das Pferd von hinten aufgezäumt wird - eine kurze Erläuterung, warum der Effekt "von technologischer und wirtschaftlicher Bedeutung" ist, ist am Anfang durchaus sinnvoll. Aber den ganzen Artikel quasi von den Ausfallursachen her zu definieren, und dann die Erklärungen (und damit die Aspekte des Effekts) nachzuschieben, halte ich nicht für einen Enzyklopädieartikel, außerdem liest sich das ganze mehr wie eine (elektrotechnischer) Lehrbuchartikel. Auch die Verlinkung könnte noch deutlich verbessert werden. -- srb 22:52, 15. Apr 2004 (CEST)
- Also gerade diese Reihenfolge schätze ich an dem Artikel. Dadurch, dass erst die Bedeutung für das alltägliche Lebendargestellt wird, wird der Artikel für mich als Leser interessant. Die nachfolgenden Erklärungen nach vorn zu setzen machen den Artikel abstossend für den physikalischen Laien, dadurch, dass sie hiuntenanstehen, wird der Artikel aber auch für den Fachmann wertvoll. Ich denke, die Herangehensweise an den Stoff über die Effekte ist auch für eine Enzyklopädie durchaus nachvollziehbar und gerechtfertigt. Liebe Grüße, Necrophorus 23:15, 15. Apr 2004 (CEST)
- Die Beurteilung der Reihenfolge ist wohl Ansichtssache, aber mir gefällt's wie gesagt nicht sonderlich. Zu den anderen Punkten:
- Die ganzen Formelbereiche sind aber deutlich zu aufgebläht - hier ist m.E. in einer Enzyklopädie weniger wirklich besser (das meinte ich mit Lehrbuchartikel, sorry dass ich es nicht vorhin schon ausgeführt habe.
- und von einer Verlinkung im Artikel kann man nun wirklich nicht reden.
- -- srb 23:43, 15. Apr 2004 (CEST)
- Die Beurteilung der Reihenfolge ist wohl Ansichtssache, aber mir gefällt's wie gesagt nicht sonderlich. Zu den anderen Punkten:
- Naja, die Verlinkung kann man ja ändern und der Formelbereich ergnzt den Artikel für den Fachmann. Die Formeln gehören für mich zur Vollständigkeit, und da sie hintenangehängt sind, sind sie auch für den Laien nicht störend. Aber ich fürchte, hier finden wir keinen gemeinsamen Konsens (müssen wir ja auch net). Liebe Grüße, Necrophorus 23:54, 15. Apr 2004 (CEST)
- P.s.: Mittlerweile macht mir das "gemeinsame" Überarbeiten der Artikel mit dir echt Spaß, ich hoffe nur, du bekommst keinen Verfolgungswahn >;O)
- Ach wo, so schreckhaft bin ich nun auch wieder nicht - schlimmer finde ich es, wenn man irgendwo begründete Kritik anbringt und auch nach Wochen tut sich nichts. Problematisch ist nur, in der Beobachtungsliste den Überblick zu wahren, wenn man auf so vielen Hochzeiten tanzt - waren grad 5 Artikel ;-) -- srb 00:50, 16. Apr 2004 (CEST)
Der Artikel steht sicher nicht im Brockhaus aber dafür in:
- Wiley Encyclopedia of Electrical and Electronics Engineering
Da es sich um ein relativ neues Feld handelt, erinnert der Artikel dort eher an einen guten Stub. Fast Auschliesslich wird da über die Problematik der Ausfälle geschrieben und es wird nur die Blacksche Gleichung aufgeführt und kurz erläutert. In erster Line finde ich auch nur Interessant warum man sich damit beschäftigen muss. Die Physik, Stochastik und die Gleichungen dahinter dagegen stehen noch in keinem Lehrbuch sondern fast ausschliesslich in den IEEE Veröffentlichungen. Ich habe mich bemüht nicht jede Gleichung aufzuführen und habe nur die wichtigsten Zusammenhänge in den Artikel geschrieben. Nichts desto trotz ist es schwierig das ganze ohne Formeln zu schreiben.
Zum Thema verlinken habe ich auch nur die Antwort 42. Was soll ich da noch verlinken? Schon der Link Aktivierungsenergie ist völlig irreführend.
Wenn ich da eine konkrete Meinung von Euch hätte und ihr Euch einig wäret, dann könnte ich die Sache angehen und das Ganze verbessern. --Paddy 02:02, 17. Apr 2004 (CEST)
- Ja ja, wenn wir uns einig wären ;-)
- Ich hab mir den Artikel grade mal ausgedruckt und werde ihn heut abend oder morgen mal in aller Ruhe durchschauen, am Bildschirm verlier ich leider sehr leicht den Überblick, wenn zu viele Formeln drin sind - auch wenn ich mit den Formeln selbst kein Verständisproblem habe. Der fehlende Lesefluß (zumindest bei mir am Bildschirm) ist auch der Hauptgrund für meine Kritik der Formellastigkeit - da ich allerdings grade die ausgedruckte Version vor mir liegen habe, dort integrieren sich die Formeln viel besser in den Text und wirken deutlich weniger störend. -- srb 15:14, 16. Apr 2004 (CEST)
Bisher hab ich nur formale Kritik vorgebracht (Formellastigkeit, von hinten aufgezäumt) - beim Durchlesen des ausgedruckten Artikels ist mir folgendes aufgefallen:
- allgemein: Die Konstanten und Symbole in den Gleichungen sollten im Text erklärt werden (z.B. die Boltzmannkonstante ist gar nicht erwähnt, was soll q sein - normalerweise eine beliebige Ladung, aber hier sieht es fast nach der Elementarladung aus)
- Der Begriff "Ausfallursache" wird ziemlich ungewöhnlich verwendet - nicht für die tatsächlichen Leiterbahnveränderungen, sondern für die Mechanismen, die dazu führen
- was sind voids, hillocks und whiskers?
- was sind aktivierte Metallionen? wie entstehen sie?
- Korngrenzendiffusion: an Tripelpunkten wird bei einer bestimmten Winkelkombination angelagert, bei einer anderen abgetragen - warum?
- Gitterdiffusion: was soll hier die "Lebenszeit" bedeuten? wie kommt hier plötzlich eine Zeit ins Spiel?
- Diffusion entlang heterogener Grenzflächen: Haftung klingt hier ziemlich komisch - liegt die Ursache nicht in den unterschiedlichen Gitterstrukturen, -konstanten und -ausrichtungen bzw. Gitter/amorph-Übergängen?
- Oberflächendiffusion: Passivierung erläutern
- Joulesche Eigenheiztun: 5-10° bei 10^6 A/cm² klingt nicht sonderlich imposant, nur 10° bei 1 Million Ampere! - hier sollten dann auch die tatsächlichen Leiterflächen und Ströme genannt werden, 1 Megaampere klingt sonst unrealistisch hoch
- wieso macht sich bei parallelen Leitungen die JEH besonders bemerkbar?
- allgemein viele Fachausdrücke, die nicht weiter erklärt werden, z.B. allein im letzten Absatz thermische Spannungen: thermische Spannung, thermischer Versatz, stress voiding, stress migration
Insgesamt enthält der Artikel sehr viele und auch sehr gute Informationen, aber er wirkt trotzdem noch ziemlich unausgegoren. Eingeführte Begriffe sollten erklärt, und dann auch möglichst konsequent verwendet werden. Die Erklärung ist umso wichtiger, wenn kein Verlinkung der Begriffe vorliegt. Auch sollte bei den Symbolen eine klare Kennzeichnung von Vektorgrößen stattfinden.
Selbst wenn ich mal davon absehe, dass meiner Meinung nach das Pferd von hinten aufgezäumt wird - ich verstehe die Argumente für diese Vorgehensweise, ich mag sie bloss nicht -, sollte trotzdem eine klarere Trennung von "Ursache und Wirkung" stattfinden, z.B. "die Aktivierungsenergie ist um 50% angestiegen, nachdem man mit SiO2 passiviert hat. Passivierung unterdrückt Oberflächendiffusion" - logischer wäre z.B.: "aufbringen einer SiO2-Schicht erhöht die Aktivierungsenergie. Dies wird deshalb Passivierung genannt". Auch die Vorgehensweisen, wie man die EM bzw. ihre Auswirkungen bei der Leiterbahnfertigung minimiert, sollten besser in einen eigenen Abschnitt ausgelagert bzw. zusammengefaßt werden.
Ich hoffe, die Kritik ist diesmal besser geeignet, um den Artikel voranzubringen, denn das wollen wir ja alle ;-) -- srb 19:44, 16. Apr 2004 (CEST)
- Ich probiere einiges zu verbessern und werde Punkt für Punkt auf Deine Kritik eingehen. Teilweise ist sie berechtigt, teilweise nicht und teilweise sehr hart. Aber wenigstens ist da etwas gekommen und deshalb werde ich mich mal dransetzen und die Seite bearbeiten und auf Deine Kritik eingehen. Vielen Dank füer dei Mitarbeit. --Paddy 17:12, 17. Apr 2004 (CEST)
- Wie ich schon am Anfang geschrieben habe, das sind Dinge, die mir beim Durchlesen aufgefallen sind. Durch die reine Aufzählung und die kurzen Formulierungen klingt es sicherlich hart - aber so ist es wirklich nicht gemeint. Einzelne Punkte wie z.B. der separate Abschnitt über die Leiterbahnfertigung sind mehr als Anregungen zu verstehen, andere sind eben nur meine Eindrücke beim Lesen (tw. mit einem Leser mit wenig physikalischen Hintergrundwissen "im Hinterkopf"), d.h. noch lange nicht dass Andere die Punkte genau so sehen.
- Das Thema ist sicherlich sehr komplex, und dass es noch keine vernünftigen Zusammenfassungen in allgemeinen Werken gibt, macht die Erstellung mit Sicherheit auch nicht einfacher. Insofern hast Du schon einen sehr guten Artikel erstellt - aber für die Einstufung als exzellenten Artikel erwarte ich einfach mehr (vielleicht manchmal zu viel), und der Artikel steht nun mal auf der Kanditatenliste.
- Und zu Deiner Anmerkung von oben: Dass ein derartiger Artikel noch in keiner anderen Enzyklopädie steht, ist für mich nicht wichtig - das Thema ist wichtig, das reicht mir für eine Aufnahme. Über die Ausführlichkeit entscheidet allein die Verständlichkeit - und nicht was andere Werke aufnehmen/aufgenommen haben.
- Also nix für ungut, bei der Kritik geht es nur darum den Artikel voranzubringen, Gruß -- srb 19:43, 17. Apr 2004 (CEST)
Erledigt
Links habe ich auch eingefügt mehr geht beim besten Willen nicht. Wenn Du noch etwas finden solltest was sich zu verlinken lohnt, sei so frei!
Punkt 1. und 3. halte ich für erledigt.
Zu 2. wenn es keine Passivierung gäbe und man das konkret beobachten könnte was da geschieht, dann bräuchte man auch nicht heuristische Gleichungen aufzustellen. Die tatsächlichen Leiterbahnveränderungen kann man nur vermuten nachdem man die Passivierung entfernt hat und die Leiterbahn unter dem REM ansieht. Wenn Du da etwas genaueres wüsstest, bräuchtest Du Dir um Deine Finazielle Lage nie wieder Gedanken zu machen. Also kann ich nur über die Mechanismen schreien.
Zu 4. Ist das so wichtig? Aktiviert sagt eigentlich schon sehr viel. Näher wird das in der Literatur in den meisten Fällen auch nicht erläutert. Ich hätte da am liebsten einen Link aber auf was?
Zu 5. Warum kann ich immer fragen bis keiner mehr weiter weiss. Fakt ist das das so beobachtet wurde. Wenn ich dazu eine Begründung gefunden hätte, dann hätte ich sie auf jeden Fall reingeschrieben.
Zu 6. Ist Lebensdauer besser? Dann ändern!
Zu 7. Habe ich so aus einem Artikel übersetzt. Das war ein durchwälzen von deutsch-englischen Wörterbüchern und eine lange Unterhaltung mit meinem Betreuer und den anderen Leuten am Institut.
Zu 8. Passivierung ist jetzt weiter oben erklärt.
Zu 9. kann ich nur sagen ich habe meine cirka 100 Leiterbahnen für meine Studienarbeit mit 1-2 Megampere pro quadrat centimeter belastet die tatsächlichen Ströme interessieren nicht und die Fläche auch nicht. Einzig interessantes ist die Stromdichte und die Leiterbahnbreite und letzteres auch nur um die verschiedenen Leiterbahnen, die ich getestet habe, voneinander zu unterscheiden. Warum es nur 5-10° K sind? Es ist eine hochentwickelte Aluminium- oder KupferlLeiterbahn und kein Ofen :-)
Zu 9.1 Induktion? Wer bis da gelesen hat stellt die Frage nicht mehr.
Zu 10 wird morgen erledigt
Danke für die Kritik. Rechtfertigen wollte ich mich nie. Ich bin nur sehr Mitteilungsbedürftig und will auch meinen Senf dazu geben :-) --Paddy 00:59, 19. Apr 2004 (CEST)
- zu 9: Die Megaampere sind also real - ich hatte hier an reale Leiterbahnen gedacht, bei denen nur kleine Ströme fließen, aber durch die geringen Durchmesser enorme Stromdichten entstehen.
- zu 9.1 (duck): ich hab beim Lesen einen kumulativen Effekt durch die Anzahl der Leiterbahnen hineininterpretiert
- Wenn ich Deine Ausführungungen zu meiner Kritik so lese, verstehe ich langsam das Problem - ich gehe beim Lesen von der realen Leiterbahnsituation aus, Du hingegen von der Testanordung, die bei den Versuchen zur EM verwendet werden. Ich schätze mal, die Skalierungsproblematik weiter unten läuft in die gleiche Schiene hinein. Gruß -- srb 01:29, 19. Apr 2004 (CEST)
Klar Forschungsthema Nummer 1 vielleich sollte man das da auch konkret so reinschreinben. Ich dachte: "Mit Hilfe der Blackschen Gleichung lassen sich Lebensdauern von Leiterbahnen in Integrierte Schaltungen (ICs), die unter "Stress" getestet worden sind, auf Lebensdauern unter realen Bedingungen extrapolieren." würde ausreichen um das deutlich zu machen. --Paddy 01:47, 19. Apr 2004 (CEST)
- Das für Haltbarkeits- bzw. Lebensdauermessungen Stresstests verwendet werden, um mit halbwegs vernünftigen Meßzeiten überhaupt irgendwelche Aussagen zu erhalten, und dann daraus Rückschlüsse auf reale Werte gezogen werden, ist schon klar - und hier erfüllen eben die Blackschen Gleichungen diesen Zweck. Aber das der ganze Artikel mehr oder weniger über die Streßtests geht, hab ich da wirklich nicht rausgelesen. -- srb 10:16, 19. Apr 2004 (CEST)
Das sollte auch nicht so sein. Denn ich will das ganze Wissenschaftlich erklären und greife dabei auf Erfahrungen aus den Streßtests zurück. Ich glaube die Joulsche Eigenheizung lässt sich bei Normalbedingungen fast gar nicht messen. Ersteinmal ist sie sehr gering und zweitens wie soll man das messen? Mir ist schon gar nicht klar woher diese Werte aus der Literatur sind. Es lässt mit Ansys durch finite Elemente simulieren aber das war es schon. --Paddy 12:40, 19. Apr 2004 (CEST)
- Noch 2 Verständnisfragen meinerseits:
- 10.1 zu Annealing: ist das nur ein anderer Ausdruck für die Hitzebehandlung, ein Beispiel dafür, oder etwas anderes?
- 10.2 zu voids: ist das nur die Bezeichnung für die Verdichtung der Leerstellen?
- Gruß -- srb 00:53, 19. Apr 2004 (CEST)
Zu 10 Allgemein ich finde das nicht zu schwierig. Wer schon auf die Idee kommt Elektromigration anzusehen, der hat zumindest von dem Thema gehört. Was ist an thermische Spannung oder thermischer Versatz schwierig thermisch? Für mich ist Spannung und Versatz ein ganz normales Wort der deutschen Sprache (siehe Duden). Und "stress voiding"¨und "stress migration" so heisst das Kind halt in der angelsächsischen Literatur. Ich bin weder wiktionary noch leo oder pons:-) Das ich das da reingeschrieben habe ist eine Nettigkeit meinerseits, falls wirklich jemand auf die Idee kommt das in der englischen Literatur nachzusehen. --Paddy 13:01, 19. Apr 2004 (CEST)
10.1 Annealing ist ein Begriff aus der Werkstoffkunde. Ich habe bisher nur die Übersetzung ausglühen in diesem Zusammenhang gehört. Bauings, Maschbauern und E-Technikern ist dieses Wort ein geläufiger Begriff. 10.2 Auf dem Bild ist eine Vielzahl dieser voids zu sehen. Voids kommen durch Abtragung von Material zustande. Fehlerstelle, Fehlstelle, Hohlraum oder Lücke beschreibt es recht treffend. Verdichtung würde ich nicht sagen. Nachdem unsere Sprache so viele Anglizismen hat und die Literatur zu Elektromigration fast ausschliesslich englisch ist ziehe ich die englischen Terminologien vor. Da weiss jeder was gemeint ist. --Paddy 12:40, 19. Apr 2004 (CEST)
- Danke, Annealing ist mir auch ein Begriff - mir war/ist nur unklar, ob Du mit der Hitzebehandlung noch andere Möglichkeiten meinst. Bei den voids muß ich zugeben, da habe ich den Wald vor lauter Bäumen nicht gesehen ;-)
- Ich denke, langsam fang ich an, die Thematik etwas zu verstehen - noch eine Frage zur Korngrenzendiffusion: sind da Korngrenzen im Material gemeint, oder an der Oberfläche? Voids können ja problemlos im Leiter entstehen, aber Hillocks sollten sich doch nur an der Oberfläche bilden? Und wenn durch Passivierung die Oberflächendiffusion unterdrückt wird, wie und wo können dann eigentlich noch hillocks entstehen? Wird die Passivierungsschicht an den Korngrenzen "hochgedrückt"? -- srb 13:38, 19. Apr 2004 (CEST)
Ich denke Du hast das sehr gut verstanden! Korngrenzendiffusion: Vorwiegend im Material. Die Frage ist was kann man da sehen? Wie lege ich die Passivierung frei, um das zu beurteilen? Ich habe das vorwiegend aus der Literatur. Ja die Passivierungsschicht wird "hochgedrückt". Das mit den Korngrenzen sei dahinhestellt. Dazu hatte ich die Mittel nicht. Mehr kann ich nicht sagen. Tut mir Leid! --Paddy 02:16, 20. Apr 2004 (CEST)
Frage zur Verkleinerung, Stromdichte und Leistungsdichte
Am Ende de Einleitung heißt es :
Durch eine Verkleinerung der Struktur (scaling) um den Faktor k erhöht sich die Leistungsdichte proportional zu k und die Stromdichte steigt um k2.
Für eine Verkleinerung um den Faktor k hätte ich eine Stromdichte proportional k und eine Leistungsdichte proportional k2 erwartet.
Ein "halb so großes" Bauteil bedeutet dann: k=2, Stromdichte * 2 und Leistungsdichte * 4 . --Thomas 20:43, 17. Apr 2004 (CEST)
- Einmal kurz nachdenken wäre von Vorteil gewesen ;-) Der Stom muss derselbe sein sonst funktionieren die Bauelemente nicht richtig. Leider exisiert keine deutsche Definition zu Leistungsdichte: "Power density is defined as the power dissipated by the chip per unit area." [1]. Also wenn die Leiterbahnen um den Faktor k näher beieinander liegen, dann ist auch die Leistungsdichte um k grösser (für mehrere Leiterbahnschichten müsste man die Definition ändern und das ganze auf das Volumen beziehen). Da die Leiterbahnen im Querschnitt k mal k (höhe mal breite) skaliert werden, folgt für die Stromdichte der Faktor k2. Ich hoffe ich konnte helfen. --Paddy 22:18, 18. Apr 2004 (CEST)
- Moment, mal ganz langsam, langsam komm ich etwas durcheinander: wovon reden wir hier überhaupt - von einer Leiterbahn, oder von der Gesamtschaltung? Und was ist hier mit "scaling um Faktor k" genau gemeint (Volumen, Fläche, alle Dimensionen)? -- srb 22:41, 18. Apr 2004 (CEST)
- Scaling heisst alles (auch Leiterbahnen) wird in alle 3 Dimension skaliert. Leider existiert da wieder kein Link, denn es ist ein sehr spezielles Thema womit sich vorwiegend die Designer und Technologen der Mikroelektronik beschäftigen. --Paddy 00:59, 19. Apr 2004 (CEST)
- Hallo Paddy,
Du definierst die Leistungsdichte flächenbezogen. Das machen inzwischen viele, vielleicht ist das sogar dummerweise schon so normiert.
Gemeint ist aber eine Strahlungsenergiedichte.
Leistungsdichte bei Wärmeengieerzeugung wird normalerweise auf das Volumen bezogen. Im Artikel sollte beschrieben werden, dass man die Energiedichte des Wärmestroms an der Chip-Oberfläche meint (so habe ich es jetzt verstanden).
Nun schriebst du : Der Strom muss derselbe sein. Ich gehe davon aus, dass die Spannung auch dieselbe sein muß. Das bedeutet dann, es wird die gleiche Leistung verbraten. Unter dieser Prämisse ist die Aussage richtig, die Stromdichte steigt proportional k2 an, weil die Leiterquerschnitte entsprechend kleiner sind.
Der Chip ist jetzt kleiner. Die Oberfläche ist nur noch ungefähr 1/k2 gross. Der Wärmestrom (=Leistungsdichte) muss daher proportional k2 sein . Wegen der geringen Höhe des Chips spielt die dritte Dimension für die Wärmeabfuhr praktisch keine Rolle.
Wie kommt man an die Aussage Stromdichte proportional k2 und Leistungsdichte proportional k? Für mich passt das noch nicht. -- Thomas 01:19, 19. Apr 2004 (CEST)
- Nachtrag :
Die Aussage : Also wenn die Leiterbahnen um den Faktor k näher beieinander liegen, dann ist auch die Leistungsdichte um k grösser ist soweit richtig, wenn man den Leistungsfluss (Transportleistung) in einem Leiter meint. Für die Elektromigration erscheint mir aber die aus der Verlustleistung resultierende Leistungsdichte (Wärmestrom), die zu einer Erhöhung der Leitertemperatur führt, wesentlicher zu sein. Und als solche habe ich sie aufgefasst, daher das Mißverständnis.
Auch das Zitat: Power density is defined as the power dissipated by the chip per unit area interpretiere ich in dem Sinne, dass es hier um die Wärmeabfuhr der Verlustleistung geht. Und die steigt proportional R*Z&thetasym, wobei beide von der Leiterbahngeometrie beeinflusst werden.
Weil die Leiterbahnen eh schon sehr dünn sind (eine Korngröße) rechne ich mal mit einer Verringerung der Leiterbreite um den Faktor 2 : R*k' * Zϑ*k' -> ~ k'2. Allerdings steigt die Stromdichte hier nur proportional k'. -- Thomas 16:28, 19. Apr 2004 (CEST)
- Das verstehe ich nicht? Leistungsfluss und Transportleistung ist das dasselbe?
- Leistungsdichte oder Wärmestrom ist nicht dasselbe! Die "(eine Korngröße)" hat damit nichts zu tun. Ja schon aber nein so nicht. Kennst Du nur Mal oder kannst Du auch Hoch ;-) Ja, ich schreibe einen Artikel zu skaling. Nur nicht heute und auch nicht morgen :-) Sei freundlich gegrüßt. :-)
- Ich habe noch einmal überlegt um es einfach auszudrücken. Du hast 10 cm darauf sind 10 Leiterbahnen jeweils mit dem Strom x parallel angeordnet. Skaling Faktor k=10. Jetzt hast Du 1 cm mit 10 Leiterbahnen jeweils mit dem Strom x parallel angeordnet. Damit ist die Leistungsdichte um k angestiegen.
- Ein bischen rummalen:
- __ __
- |xx| |xx|
- __|xx|__|xx|__
- skaling faktor k=2
- _ _
- _|x|_|x|_
- Jetzt sehe ich erst was Du gemacht hast! Du hast Eigenheizung mit Leistungsdichte in einen Topf geschmissen :-( R*k' * Zϑ*k' -> ~ k'2. Warum wird der Widerstand 2 Mal so groß? Und Warum ist die thermische Impedanz dann doppelt so groß? Die Gleichung die Du da aufgestellt hast ist leider völliger Unsinn :-( Das wäre eine Katasstrophe, wenn das so wäre wie Du das geschrieben hast! Wenn Du Rechtschreibfehler gefunden hast bitte korrigieren. --Paddy 17:38, 20. Apr 2004 (CEST)
Hallo Paddy,
vielen Dank für Deine Mühe es zu erklären. Aber ich glaube langsam, dass es keinen Sinn macht weiter darüber zu diskutieren, weil wir uns nicht klar genug ausdrücken oder irgendwelche Verständnisschwierigkeiten haben. Zeigt mir aber das einige Begriffe und vielleicht auch Randbedingungen, Annahmen usw. nicht hinreichend dargestellt wurden.
Ohne grosse Rechnungen zu Deinen Fragen : Meiner Meinung nach ist der elektrische Widerstand umgekehrt proportional des Leiterquerschnittes; R ~ 1/A (A=Leiterquerschnitt). Dies führt bei einer Querschnittsverringerung zu einer Erhöhung des Widerstandes.
Die Thermische Impedanz ist für diese vereinfachenden Betrachtungen nichts anderes als ein thermischer Widerstand. Auch hier gilt Rth~1/A. Eine Querschnittsverringerung führt zu einer Erhöhung des Widerstandes.
Die Gleichung stammt letztendlich nicht von mir. Ich habe sie aus dem Artikel Elektromigration, Abschnitt Eigenheizung, und sie nur entsprechend der obigen Aussagen an den entsprechenden Stellen mit dem Faktor k' ergänzt, und den konstanten Strom weggelassen.
In diesem Abschnitt steht auch : Besonders stark macht sich die Joulesche Eigenheizung bemerkbar, wenn mehrere parallele Leitungen nebeneinander getestet werden. Also spielen die Effekte über die wir diskutieren praktisch keine Rolle. -- Thomas 02:06, 21. Apr 2004 (CEST)
- Hi Thomas, wir hängen nur an den Grundlagen ;-) Leistung_(Physik) und Spezifischer Widerstand sind die Artikel die Du lesen solltest. I ist immer gleich und es ändert sich der Querschnitt q der Leiterbahn und das quadratisch. Der spezifische Widerstand ist auch der selbe (obwohl er sich mit der verbesserten Technologie auch verbessert). Einsetzen in P=R/I2 dann bekommst Du den quadratischen Faktor. Das ist alles. Mehr muss da nicht hineininterpretiert werden:-) Die Joulesche Eigenheizung ist ein ganz anderer Effekt! Und das mit dem parallel hat einzig und allein mit der Induktion zu tun. --Paddy 14:04, 21. Apr 2004 (CEST)
- l bleibt gleich? Das mag ja in den Testanordnungen stimmen, aber real wird durch scaling doch auch die Länge der Leiterbahnen verringert. -- srb 14:17, 21. Apr 2004 (CEST)
l bleibt sicherlich nicht gleich ist aber nicht vom skaling Faktor betroffen. Die Länge der Leiterbahnen wird sich nur ändern, wenn der Chip an sich kleiner wird. Das hat aber nichts mit scaling zu tun. scaling sagt nur etwas über die Integrationsdichte der Bauelemente etwas aus. Wenn die steigt müssen trotz allem alle Bauelemente versorgt werden. Beispiel ich habe auf einem Chip 10 Transistoren. Durch einen geschickten Technologieschritt mache ich 100 Transistoren auf dieselbe Fläche. Wenn ich jetzt auch die Leiterbahnen verkürzen würde dann hätten 90 Bauelemente keinen Saft;-) --Paddy 15:00, 21. Apr 2004 (CEST)
Herleitung von Formeln
Bei den ganzen Formeln fehlt mir noch die Herleitung für
--Mijobe 23:00, 20. Apr 2004 (CEST)
- ist ohne Herleitung in jedem Standardwerk der Elektrotechnik nachzulesen. Ist auch verlinkt durch Elektrostatik. Das müssen die schreiben. --Paddy 23:34, 20. Apr 2004 (CEST)
Laut des Ohmschen Gesetzes Gott erhalte den Genitiv! :-) --Paddy 23:42, 20. Apr 2004 (CEST)
- ist zwar schön, gibt mir aber nicht an, wie ich von der Differenz auf das Produkt komme. Laut des Dudens wird laut mit Artikel mit Genetiv aber ebenfalls laut Duden ohne Artikel mit Dativ verwendet :) --Mijobe 10:22, 21. Apr 2004 (CEST)
Ja seit der neuen deutschen Rechtschreibreform geht das aber ich halte das für schlechtes Deutsch;-) Ich Teile einfach die beiden Kräfte auf das geht auch aus dem Bild und dem Text hervor. Ich glaube das darf man einfach so ohne große Herleitungen:-) --Paddy 14:19, 21. Apr 2004 (CEST)
- Sorry, aber da bin ich immer noch nicht zufrieden mit (wahrscheinlich versteh ich's ja einfach nicht; ich hoffe die Lehrstunde geht dir nicht allzusehr auf den Geist). Soweit ich das verstehe ist das ergibt dann wobei ich den Letzten Schritt nicht nachvollziehen kann --Mijobe 14:43, 21. Apr 2004 (CEST)
- Jetzt kapier ich erst die Problematik - die Einbezieung des Impulsübertrags durch Stöße der Leitungeselektronen in eine effektive Ladung. Da sollte wirklich noch was dazu geschrieben werden, denn das ist auch für mich nicht unbedingt ersichtlich. -- srb 15:12, 21. Apr 2004 (CEST)
Eigentlich hast Du das schon gut verstanden. Die Ionen werden durch das Feld bewegt nach der allgemeinen Gleichung s.o. und stoßen halt mit anderen Ionen zusammen. Weil das Zusammenstoßen auch berücksichtigt werden muss und sich das Teil nicht wie in der Schulphysik im Vakuum bewegt, packen die Elektrotechniker einfach diesen Faktor Z* da rein. Ich weiß nicht wie exakt das ist aber es reicht für mich als E-Techniker um die ganze Sache zu modellieren. Das ist etwa so wie die Bauings, die in der Statik einfach nocheinmal einen Faktor 2,5 mit einfügen damit die Brücke nicht zusammenfällt;-) --Paddy 15:15, 21. Apr 2004 (CEST)
Textkritik
Die Einleitung ist, jedenfalls für die Darstellung in diesem Artikel zu unpräzise. Habe mir erlaubt das Zitat mit Fussnoten zu versehen :
Unter Elektromigration (EM) versteht man die Bewegung (1) von Ionen (2) in einem festen Leiter (3), die durch ein elektrisches Feld verursacht wird.
Wie kann man es auch interpretieren :
- Bewegung? Was für eine, thermische Schwingung, Rotation, usw.? Hier geht es um Wanderung, wie der Lateiner sofort aus -migration herausliest. Oder Bewegung als "Umzug von A nach B".
- Ionen sind zum Beispiel Chlorid-Ionen. Die sind hier aber wohl nicht gemeint, obwohl auch sie zu Schäden führen (können). Hier wandern Metallatome eines Leiterbahnmaterials. Oder wenigstens Metallionen.
- Feste Leiter können neben Metalle auch Salze, Grafit und was weiß ich noch sein.
Der einleitende Satz könnte interpretiert werden als Bewegung von Bromid in Silberchlorid. Überführungszahlen? Was muß man ändern um diesen einleitenden Satz in einem Artikel über Infrarotspektroskopie wiederverwenden zu können?
Wohin gehörts? Handelt es sich um neues Trennverfahren, eine analytische Methode? Der Leser mag sich wundern; dies ist für ICs so wichtig?
An den Anfang gehören einige Sätze, die dieses komplexe Problem vereinfacht, transparent und eingrenzend darstellen, ohne Formeln und ohne Schnick-Schnack.
Mir ist zur Zeit nicht bekannt, ob der Begriff Elektromigration wirklich alles umfasst was sich im festen Leiter unter Einfuss eines elektrischen Feldes bewegt/wandert, oder ob es sich um das spezifische Problem der Wanderung von Leiteratomen im metallischen Leiter handelt. Was beinhaltet der Begriff? Unabhängig von dem was in den Folgeabschnitten beschrieben wurde. Wer kann Auskunft geben?
Bei meinen bisherigen Recherchen (Google) ist mir aufgefallen, es ist kein neues Problem, seit 40 Jahren bastelt man dran. --Thomas 02:50, 21. Apr 2004 (CEST)
Mindeststromdichte
Bei einem kurzen Recherchieren im Netz fand ich die Feststellung über eine Mindeststromstärke von 1· 106 A/cm². Klingt ja irgendwie vernünftig, daß eine untere Schranke für den Effekt existiert - aber ist die Zahl korrekt? -- srb 03:00, 21. Apr 2004 (CEST)
- 1· 106 6 A/cm² ist ein Anfang. Vor einem Megampere kann man nicht anfangen. Das ist ein guter Anfang! :-) --Paddy 03:13, 21. Apr 2004 (CEST)
- Dann war das in dem Artikel wohl nur ein Druckfehler mit fehlender Hochstellung - hab mich schon über den Zahlenwert gewundert ;-) -- srb 03:29, 21. Apr 2004 (CEST)
Materialfrage
Bedingt auch durch den zunehmenden Einsatz von Kupfer anstelle von Aluminium als Leiterbahnmaterial wird dieses Forschungsgebiet für die Chipindustrie immer wichtiger.
Ist es nicht vielmehr so, dass man durch die Forschungen zur EM von Aluminium zu AlCu-Legierungen übergegangen ist, wodurch die EM deutlich verringert wurde? -- srb 03:06, 21. Apr 2004 (CEST)
- Sehr richtig! Die EM ist bei Kupfer zurückgegangen, weil Kupfer ein besserer Leiter ist. Diese AlCu-Legierungen wurden eine Zeit verwendet und Wahrscheinlich teilweise immernoch. Aber wenn Du Dir heute einen AMD Prozessor kaufst, dann sind da nur Kupferleiterbahnen drin! Das fing an mit dem Coppermine.
- Dieser Auftrag ging von Infinion an die Universität Hannover und TU Dresden. Die Frage war kann ich immernoch diese Blacksche Gleichung bei Kupferleiterbahnen verwenden. Die Antwort ist Ja! Trotzdem sind alle Chiphersteller sehr daran interessiert die EM auf ihren Chips zu untersuchen, um ihren Prozess zu optimieren und mit zunehmender Miniaturisierung immernoch die Gewissheit zu haben, ein Qualitätsprodukt zu verkaufen. --Paddy 13:37, 21. Apr 2004 (CEST)
- Das wird m.E. im Text noch nicht richtig deutlich. Da sollte noch was ergänzt werden, schließlich ist die EM ja auch ein Grund für den Materialwechsel. Im Moment liest sich der Satz so, als ob EM bei Al nicht so wichtig war, bei Cu jedoch materialtechnisch deutlich größer ist. -- srb 14:14, 21. Apr 2004 (CEST)
Textvorschlag Einleitung
Habe mal als EM-Laie versucht für eine Einleitung das Wesentliche zusammenzufassen. Vielleicht können es ja die Experten einbauen.
Unter Elektromigration (EM) versteht man die Wanderung der Metallatome eines elektrischen Leiters, verursacht durch ein elektrisches Feld. Von diesem Vorgang sind in erster Linie ICs betroffen, da hier hohe Stromdichten und hohe Feldstärken? auftreten. Da nicht alle Atome gleichmäßig wandern bilden sich im Leiter durch Abwanderung Löcher (voids) , und durch Abscheidung Verdickungen (hillocks).
Dies kann im Falle der Abwanderung zur vollständigen Leitungsunterbrechung führen. Im Fall der Ausscheidung können bei nahe beieinander liegenden Leitern Kurzschlüsse entstehen.
Als bevorzugte Startpunkte haben sich Kleinwinkelkorngrenzen (spitze Ecken der zusammenstossenden Korngrenzflächen des metallischen Leiters) herausgestellt, als bevorzugter Wanderungsweg die Korngrenzen selbst. Zur Verringerung der Elektromigration versucht man ein Gefüge einzustellen, das möglichst wenig Kleinwinkelkorngrenzen und nur wenige im Leiter liegende Korngrenzen aufweist. Idealerweise weist das Gefüge dann die Struktur einer ein- bis zweilagigen "Natursteinsteinmauer" auf, auch Bambusstruktur genannt (siehe Bild). Eine Passivierung der Leiteroberfläche mit Siliziumdioxid verringert die Diffusion über die freiliegenden Korngrenzen.
Metallische Leiter unter hoher Strombelastung neigen generell zu Elektromigration. Wie bei chemischen Reaktionen zeigt sie ein vom Werkstoff abhängiges exponentielles Temperaturverhalten (15°C höhere? Temperatur verursacht doppelten Effekt). Wie im Abschnitt [Verkleinerung von ICs] dargestellt ergibt sich gerade aus der Miniaturisierung von ICs eine drastische Erhöhung der Arbeitstemperatur und damit auch eine Gefahr der Schädigung durch Elektromigration. Der Trend zu immer höheren Frequenzen läßt den auf das Volumen bezogene Leistungsverbrauch (=Wärmeerzeugung) zusätzlich quadratisch steigen.
Schlage zusätzlich einen Abschnitt IC-Verkleinerung vor. Vielleicht einen ganzen Artikel?
Bein Korrekturlesen fiel mir auf, als Einleitung schon wieder zu lang. Na, ja. --Thomas 03:09, 21. Apr 2004 (CEST)
Diffusion und Aktivierungsenergie
Die Aktivierungsenergie gibt doch nur an, ob aus diesem Bereich (Oberfläche, Korngrenze, etc.) Atome angeregt werden und damit wegwandern - die Diffusion hingegen beschreibt doch eigentlich nur die Bewegung der frei beweglichen Ionen? Wenn z.B. ein Ion an einer Korngrenze aktiviert wurde, kann es doch auch durch das Gitter weiterdiffundieren - ohne Rücksicht auf die dortige Aktivierungsenergie. Sehe ich da was falsch? -- srb 03:26, 21. Apr 2004 (CEST)
Abschnitt Historisches
Vielleicht sollte noch ein kurzer historischer Überblick eingefügt werden. Wann gab es erste Untersuchungen? Wann wurde EM in der Praxis wichtig? Wann begann man die EM zu testen, bevor die Chips in die Produktion gingen? Wann wurden wg. EM Materialien geändert? -- srb 14:49, 21. Apr 2004 (CEST)