Diskussion:Mandelbrot-Menge

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 31. Oktober 2005 um 13:59 Uhr durch Hoehue (Diskussion | Beiträge) (Zur Länge der Grenzzyklen). Sie kann sich erheblich von der aktuellen Version unterscheiden.


Ausgelagerte ältere Beiträge:


Zur Länge der Grenzzyklen

 
Länge der Grenzzyklen in der Mandelbrotmenge in farbiger Darstellung. Der Bereich außerhalb ist in Graustufen dargestellt

gerechnet, nicht gemalt. AlterVista 00:09, 28. Okt 2005 (CEST)

Mal 'ne gute Idee zur Visualisierung der Grenzzyklen. Zumindest besser, als die Idee mit der Farblichen Darstellung der Richtung der Folge;-) Das Bild ist schon etwas aussagekräftiger, als das schwarze, was an dieser Stelle im Artikel ist.
Aber:
* Die Farbwahl ist aus ästhetischer Sichweise -wie hat sich unsers Exkanzlers Frau ausgedrückt- ... suboptimal.
* Wie hast du das ausgerechnet? Die Farbgebung von einigen kleineren Knospen widerspricht den Aussagen des Artikels. Kann es sein, dass etwa ein 8-er Zyklus als 2-er oder -4er Zyklus erscheint, weil er in Wirklichkeit zwischen vier bzw. zwei nahe beieinanderliegenden Zyklen wechselt?
Hoehue 20:02, 29. Okt 2005 (CEST)
Es sind ja "Grenz"zyklen, im Normalfall also keine exakt geschlossenen Kurven, wenn man nach endlicher Anzahl Iterationsschritte auf die Periodendauer testet. Die Folge nähert sich dem Zyklus nur an. Man muss im Programm somit unterscheiden, wie nah zwei Punkte zusammenliegen dürfen, damit sie noch unterschieden werden und nicht als ein Punkt gelten. Ich habe also erstmal für jeden Punkt 100.000 Iterationsschritte gemacht, und wenn der Punkt zur Menge gehört hat, maximal sechs weitere Schritte. Wenn bei diesen sechs weiteren Schritten ein Punkt auftrat, der maximal epsilon=0.1 vom einmillionsten Wert entfernt ist, gilt der Zyklus als geschlossen. epsilon ist ja nicht wirklich klein. Ich wollte noch weitere Tests machen. Ob die Periode der Grenzzyklen analytisch berechnet werden kann, weiß ich nicht. Daher habe ich die Grafik erstmal hierrein gestellt. ("gerechnet nicht gemalt" ist daher auch eine Einschränkung, die auf die Numerik verweist.) Was die Farben angeht, habe ich eben die sechs extremen genommen. Wer will kann ja Vorschläge zur Verbesserung machen, oder das Bild umfärben. Ist ja kein Aufwand.AlterVista 20:58, 29. Okt 2005 (CEST)
Ich hab' vorhin mal deine Idee aufgegriffen und ein bisschen rumgespielt.Hoehue 01:00, 30. Okt 2005 (CEST)
Grafisch ist das inzwischen durchaus ansprechend. Für das Ablesen der Periodizität muss aber der Leser ständig zwischen Figur und der Zuordnungsliste zu den Farben hin und her schauen. Warum also nicht gleich die Zahlen dran schreiben? Mit den Zahlen erkennt man auf einen Blick die Gesetzmäßigkeiten wie die Periodizitätsfolgen 2, 3, 4, 5, ... vom "Kopf" zur Kardioidkerbe hin oder 3, 5, 7, 9, ... vom "Arm" ins "Tal der Seepferdchen". Und das ist ja der eigentliche Erkenntnisgewinn. Habe zu diesen Gesetzmäßigkeiten etwas Text hinzugefügt und das ganze etwas weiter nach vorne geholt, da es weniger Mathematik erfordert als der Abschnitt über attraktive Zyklen. Man würde diese Folgen leichter erkennen, wenn eure Farbpalette ein etwas kontinuierlicheres Spektrum für die Abhängigkeit von Periodizität zu Farbe wäre, eher so wie bei wissenschaftlichen Falschfarbendarstellungen von Intensitäten üblich. Das wäre allerdings eine partiell redundante Information, da man ja schon über die Größe der "Knospen" eine Vorstellung über die Periodizität bekommt. Andererseits hat die Kodierung mit Farben den Vorteil, dass man auch die Periodizität sehr kleiner Objekte wie z. B. der größeren Satelliten erkennt. Hatte schon überlegt, in diesem Fall die Zahlen daneben zu schreiben und mit einem Pfeile auf die zugehörige Flächen zu verweisen. Sieht aber nicht schön aus. Vielleicht wäre eine Kombination aus Zahlen und Farben ideal. Man müsste die Farbzuordnung dann nicht mit Worten beschreiben. Evtl. würde es auch reichen, eine Farbleiter ins Bild zu integrieren und mit Zahlen zu versehen. Hallo Hoehue, rechne mal mit einem Abbruchkriterium |zn|>1000 statt |zn|>2, dann werden die Streifenbreiten außerhalb von M sehr viel harmonischer. Der zusätzliche Rechenzeitbedarf ist minimal, da die Folge ab |zn|>2 überexponentiell divergiert. --Wolfgangbeyer 02:27, 30. Okt 2005 (CEST)
Ja. Die Zahlen gehören natürlich noch dazu. Stellt sich nur noch die Frage, ob man die Zahlen überall reinmacht, wo's geht, oder nur jeweils einmal. Nur in die jeweils größte Knowpe ist auch blöd, weil sie dann ziemlich verstreut sind. Ich hab' jetzt mal die Zahlen 1 bis 9 in die Folge von Knospen mit Abstand 1 oberhalb des Kardioids reingeschrieben. Oder ist eine Legende doch besser? Ich versuche mir da einen Leser vorzustellen, der die Aussagen des Textes etwa über die Knospen an den Satelliten nachvollziehen will. Er muss dann immer wieder wohin scrollen, wo die entsprechenden Zahlen stehen. Legende in separatem Bild?
Zur Farbpallette: Sag nicht "eure" Farbpallette. Meine ist eine gaanz andere, als die von Altervista! Aber ich muss gestehen, dass ich auch noch nicht so ganz glücklich damit bin. Ich wollte gerne deutlich unterscheidbare Farben für die kleineren Zahlen und dann einen glatten Übergang hin zu schwarz für große Zahlen. Wenn du mir einen Verweis zu einer Darstellung mit dem Farbverlauf, den du im Kopf hast geben kannst, wäre das schön. Ideal wäre natürlich eine Rechenvorschrift. Die Größe der Knospen reicht übrigens nicht aus, um die Länge des Grenzzyklus abzulesen. Es gibt Beispiele, wo eine Knospe mit längerem Grenzzyklus größer ist, als eine andere mit kürzerem Grenzzyklus. Das mit dem größeren Wert für die Abbruchbedingung bau ich ein, wenn ich's nochmal mit anderen Farben mache. Hoehue 09:52, 30. Okt 2005 (CET)
Sehr schön Hoehue. Die eine oder andere Zahl könnte sich in schwarz besser von der sie umgebenden Farbe abheben. Ansonsten prima. Ich konnte das Bild mit pngcrush nochmal um 200KB verkleinern. Kann ich mit der endgültigen Version auch machen. (Oder Du installierst pngcrush selbst :) ) AlterVista 11:49, 30. Okt 2005 (CET)
Eine interessante Palette wäre vielleicht ausgehend von dunkelblau, über gelb nach rot, und dunkelrot z. B. mit den RGB-Werten
1: 0 0 200
2: 0 20 150
3: 0 40 100
4: 0 80 50
5: 0 120 0
6: 130 190 0
7: 250 250 0
8: 250 200 0
9: 250 120 0
10: 250 0 0
11: 180 0 0
12: 100 0 0
Oder auch irgendwie umgekehrt. Ich bin allerdings etwas rot-grün-schwach, wie 10% aller Männer ;-). Von daher hätte ich auch nichts dagegen, die Zahlen wenigstens bis 9 überall reinzuschreiben, wo es geht. Bei der obigen Palette kann ich insbesondere die beiden Nachbarn von gelb kaum unterscheiden. So wie jetzt, d. h. ganz ohne Streifen im Außenraum finde ich es eigentlich am besten. Ach, und ein etwas ansprechenderer Font wie z. B. Arial oder Times Roman wäre auch nicht schlecht. --Wolfgangbeyer 13:00, 30. Okt 2005 (CET)
Habe die Palette doch noch auf 12 erweitert. So finde ich sie ziemlich gut. Ich würde übrigens die "1" vielleicht 30% gößer als die "2" machen und die "3" 20% kleiner. Dann ist der Übergang zu den noch kleineren Zahlen nicht so abrupt. --Wolfgangbeyer 13:42, 30. Okt 2005 (CET)
 
Die Ziffern und der Farbkode geben die Perioden der Grenzzyklen von Folgen zu c-Werten aus den zugehörigen Bereichen an.
Habe mal eine entsprechende grobe Version hochgeladen. Müsste man noch mal richtig rechnen statt nur nachfärben. Habe auch oben und unten etwas beschnitten. Eine Endversion mit 4000x3000 wäre sicher nicht schlecht (knapp unter dem Limit für thumbs) und mit Ziffern überall dort, wo sie jetzt auch im Bild im Artikel sind (letzteres könnte auch ich gerne übernehmen). Ein englischer Titel passend für Mediawiki wäre auch nicht schlecht, z. B. Mandelbrot Set – Periodicities coloured.png oder so ähnlich. --Wolfgangbeyer 15:53, 30. Okt 2005 (CET)
Da die Unterscheidung zwischen 1 und 2 oder auch 2 und 3 sehr viel interessanter ist als zwischen 8 und 9 oder 18 und 19 würde ich das auch in der Palette berücksichtigen. Ansonsten ist es gerade wegen Deiner rot-grün Schwäche sinnvoll Dir die Wahl der Farben zu überlassen. Die Grafik soll ja nicht für 5% der Menschheit wertlos sein. AlterVista 16:40, 30. Okt 2005 (CET)
Naja, es sollte natürlich auch nicht unbedingt für 95% der Menschheit hochgradig komisch aussehen ;-). Das kann ich leider nicht beurteilen. Wenn wir einen größeren Unterschied zwischen 1 und 2 machen, dann steht uns ein entsprechend kleinerer Teil des Spektrums für den Rest zur Verfügung und damit eine kleinere Anzahl von deutlich unterscheidbaren Stufen. Wäre doch schade, ausgerechnet für die beiden Werte, die nur einmal vorkommen und sofort zu erkennen sind, einen größeren Spektralbereich zu verschenken. Daher hatte ich versucht, die empfundenen Farbabstände alle ungefähr gleich groß zu machen (das habe ich oft mit nichtlinearen RGB-Verläufen besser hinbekommen als mit linearen). Da die Periodizitätsdifferenz ja auch konstant ist, ist das eigentlich auch aus mathematischer Sicht ganz ok. Klar, wenn man sagt, 1/Periodizität ist die interessante Größe, dann sähe das anders aus. Aber es geht ja mehr um die Erkennbarkeit bei den kleineren Knospen und den Satelliten ohne das ganze Bild mit Zahlen zu überfluten. --Wolfgangbeyer 17:11, 30. Okt 2005 (CET)
Naja, es sollte natürlich auch nicht unbedingt für 95% der Menschheit hochgradig komisch aussehen ;-)' Da werden wir doch hoffentlich einen Kompromiss finden;) Ich habe noch folgende Anpassungen an der Farbpalette vorgenommen:
* Die Kardioide etwas dunkler mit leichtem Violettstich. Das reine Blau war mir für diese große Fläche etwas zu grell. Dann hat der Kopf dieses reine Blau.
* Die Blau-/Grüntöne etwas aufgehellt, weil ich die dunkleren Tone später noch verwende.
* Zwischen blau und grün noch eine cyan-artige Farbton sowie ein grüngelb zwischen grün und gelb eingefügt.
* Nach rot wieder über violett/blau/grün, aber insgesamt dunkler als im ersten Durchgang, hin zu braun, was dann in schwarz übergeht. Damit hat man über 20 vernünftige Kontraste aber trotzdem eine klare Reihenfolge.
Die kleinen Werte können ruhig alle blau sein, da die Flächen groß sind und sie direkt aneinandergrenzen, kann man die Kontraste gut erkennen. Die Zahlen habe ich jetzt nur jeweis einmal drangeschrieben. Und zwar im "Tal der Seepferdchen". Dort kommen ja ebenfalls alle Zahlen vor (abwechselnd rechts und links), die Knospen werden aber nicht so schnell kleiner, wie in der "Pofalte". Man kann das "Tal der Seepferdchen" sozusagen als Legende nehmen. Als Schriftart hab' ich Arial genommen. Serifnlos halte ich hier für besser.
Wie sieht's eigentlich mit dem Koordinatenkreuz aus, was in dem aktuellen Bild im Artikel drin ist? Ich halte es an dieser Stelle nicht für notwendig, fände es aber schon gut, wenn im Artikel ein Bild mit Koordinatenachsen auftaucht, damit klar wird, dass es sich um eine Teilmenge der komplexen Zahlen handelt. Am Anfang wäre sowas vielleicht angebracht. Hoehue 12:09, 31. Okt 2005 (CET)