Desoxyribonukleinsäure

Helixmolekül als Träger der Erbinformation
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 9. April 2003 um 18:33 Uhr durch 213.39.152.136 (Diskussion). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Desoxyribonukleinsäure (DNA) ist der Träger der Erbinformation. Anhand dieser Information werden Proteine produziert.

Datei:Dna-helix.png

DNA-Molekül

Desoxyribonukleinsäure wird im Deutschen mit DNS abgekürzt. Im wissenschaftlichen Sprachgebrauch verwendet man meistens die englische Abkürzung DNA (deoxyribonucleic acid).

Die Struktur der DNA wurde 1953 von James Watson und Francis Crick entschlüsselt, die 1962 dafür den Nobelpreis erhielten.

Nach dem Modell dieser beiden Forscher ist die DNA aus zwei gegenläufigen DNA-Einzelsträngen aufgebaut. Jeder Einzelstrang hat ein 5'- und ein 3'-Ende. Am 5'-Ende sitzt ein Phosphorsäurerest, am 3'-Ende eine OH-Gruppe. Genauer besitzt die DNA eine Strickleiterstruktur, bei der die zwei Holme der Leiter um eine gedachte Achse schraubenförmig gewunden sind (Doppelhelixstruktur). Die beiden Holme der Strickleiter werden aus Hunderttausenden sich abwechselnder Zucker- (Desoxyribose-) und Phosphorsäurereste gebildet, die innerhalb jedes DNA-Einzelstrangs (Holms) über feste Atombindungen miteinander verknüpft sind. Die Sprossen der Strickleiter bestehen aus je zwei organischen Basen, die über Wasserstoffbrücken (schwächere Bindungskräfte) miteinander verbunden sind und so dafür sorgen, dass die beiden Holme auch im schraubenförmigen Zustand der Strickleiter verknüpft bleiben und im gleichen Abstand nebeneinander liegen. Insgesamt gibt es in der DNA vier verschiedene organische Basen: Adenin, Cytosin, Guanin und Thymin, die gewöhnlich mit den Anfangsbuchstaben A, C, G und T abgekürzt werden. Es bilden innerhalb einer Sprosse der Strickleiter immer Adenin und Thymin oder Cytosin und Guanin ein Paar. Zwischen Adenin und Thymin bilden sich dabei zwei Wasserstoffbrücken aus; Cytosin und Guanin sind über drei Wasserstoffbrücken miteinander verknüpft.

Jeweils drei solcher Basen, wie sie in einem DNA-Einzelstrang direkt hintereinander liegen, bilden ein so genanntes Basentriplett. Jedes Basentriplett steht für eine von 20 Aminosäuren, aus denen die Proteine aufgebaut sind. Die Reihenfolge der Basen - und damit der Basentripletts - bestimmt also die Reihenfolge der Aminosäuren in den Proteinen. Dadurch wird der Aufbau der Proteine mit Hilfe der Basensequenz innerhalb der DNA beschrieben. Die Information der DNA wird durch die Transskription und Translation der Proteinbiosynthese zunächst in m-RNA und dann in die Peptidkette übersetzt.

Bemerkenswert ist, dass das genetische Alphabet für alle Lebewesen das gleiche ist und alle Lebewesen die gleiche "genetische Sprache" sprechen, das heißt, ein bestimmtes Basentriplett steht immer für die gleiche Aminosäure. Deswegen ist es möglich, in der Gentechnik z.B. das Gen für menschliches Insulin in Bakterien einzuschleusen, damit diese Insulin produzieren.


Verdopplung der DNA

 

Verdopplung der DNA
Bild von DOE Human Genome Project.

DNA-Replikation

Die DNA wird nach dem so genannten semi-konservativen Prinzip repliziert (verdoppelt). Die doppel­strängige Helix wird zunächst durch das Enzym Helicase aufgetrennt. Ein Einzelstrang dient als Matrize für den zu synthetisierenden komplementären Gegenstrang, d.h. die replizierte DNA besteht jeweils aus einem alten und einem neu synthetisierten komplementären Einzelstrang. Der Vorgang der DNA-Synthese, d.h. die Bindung der zu verknüpfenden Nucleotide, wird durch Enzyme aus der Gruppe der DNA-Polymerasen vollzogen. Ein zu verknüpfendes Nucleotid muss in der Triphosphat-Verbindung - also als Desoxyribonukleosidtriphosphat - vorliegen. Durch Abspaltung zweier Phosphatteile wird die für den Bindungsvorgang benötigte Energie frei.

Im Bereich der durch das Enzym Helicase gebildeteten Replikationsgabel (das heißt, zweier auseinander laufender DNA-Einzelstränge) markiert zunächst ein RNA-Primer den Startpunkt der DNA-Neusynthese. An das RNA-Molekül hängt die DNA-Polymerase dann ein zum Nucleotid des alten DNA-Einzelstrangs komplementäres Nucleotid, daran wieder ein weiteres neues passendes Nukleotid usw., bis die DNA wieder zu einem Doppelstrang komplettiert wurde. Dies geschieht an beiden geöffneten Einzelsträngen.

Dennoch ergibt sich dabei ein Problem: Die Verknüpfung der neuen Nucleotide zu einem komplementären DNA-Einzelstrang verläuft nur in 5'→3' Richtung, d.h. kontinuierlich den alten 3'→5'-Strang entlang (und dabei diesen ablesend) in Richtung der sich immer weiter öffenenden Replikationsgabel ohne Pause in einem Schritt durch. Die Synthese des zweiten neuen Stranges am alten 5'→3'-Strang dagegen kann nicht kontinuierlich in Richtung der Replikationsgabel, sondern nur von dieser weg ebenfalls in 5'→3' Richtung erfolgen. Die Replikationsgabel ist aber zu Beginn der Replikation nur ein wenig geöffnet, weshalb an diesem Strang - quasi in 'unpassender' Gegenrichtung - immer nur ein kurzes Stück neuer komplementärer DNA entstehen kann. Da hier jeweils eine DNA-Polymerase nur ca. 1000 Nucleotide verknüpft, ist es notwendig, den gesamten komplementären Strang stückchenweise zu synthetisieren. Bei etwas weiter geöffnetem Zustand der Replikationsgabel lagert sich daher ein neuer RNA-Primer wieder direkt an der Gabelungsstelle an den DNA-Einzelstrang an, und die nächste DNA-Polymerase beginnt - sich von der Replikationsgabel entfernend - erneut ca. 1000 Nucleotide an den RNA-Primer zu hängen. Dasselbe Spielchen wird laufend wiederholt, d.h. der komplementäre DNA-Strang entsteht nach und nach häppchenweise. Bei der Synthese des 3'→5'-Stranges wird also pro DNA-Syntheseeinheit jeweils ein neuer RNA-Primer benötigt. Primer und zugehörige Syntheseeinheit bezeichnet man als Okazaki-Stück.

Erwähnt sei noch, dass die für den Replikations-Start benötigten RNA-Primer enzymatisch abgebaut werden. Dadurch entstehen Lücken im neuen DNA-Strang, welche durch spezielle DNA-Polymerasen mit DNA-Nucleotiden aufgefüllt werden. Zum Abschluss verknüpft das Enzym Ligase die noch nicht miteinander verbundenen neuen DNA-Abschnitte zu einem einzigen, langen, komplementären Einzelstrang.

Nach Abschluss der Replikation wurden also zwei DNA-Einzelstränge in etwas unterschiedlicher Weise jeweils wieder zu einem Doppelstrang ergänzt. Aus einem DNA-Molekül sind somit zwei entstanden.