跳转到内容

Bagging算法

维基百科,自由的百科全书

这是Bagging算法当前版本,由140.113.136.221留言编辑于2024年6月4日 (二) 10:39 (更正錯字)。这个网址是本页该版本的固定链接。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)

Bagging算法 (英語:Bootstrap aggregating,引導聚集算法),又稱裝袋算法,是機器學習領域的一種集成學習算法。最初由Leo Breiman於1994年提出。Bagging算法可與其他分類回歸算法結合,提高其準確率、穩定性的同時,透過降低結果的變異數,避免過擬合的發生。

算法步骤

[编辑]

给定一个大小为训练集,Bagging算法从中均匀、有放回地(即使用自助抽样法)选出个大小为子集,作为新的训练集。在这个训练集上使用分类、回归等算法,则可得到个模型,再透過取平均值、取多数票等方法,即可得到Bagging的结果。

参考文献

[编辑]