跳转到内容

PyTorch

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是本页的一个历史版本,由Mhss留言 | 贡献2021年12月19日 (日) 18:10 top编辑。这可能和当前版本存在着巨大的差异。

PyTorch
原作者Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan
開發者Facebook AI研究实验室(FAIR)
首次发布2016年10月,​8年前​(2016-October
当前版本2.7.0[1]在维基数据编辑(2025年4月23日,16天前)
源代码库github.com/pytorch/pytorch
编程语言Python, C++, CUDA
操作系统Linux, macOS, Windows
类型机器学习深度学习
许可协议BSD许可证
网站pytorch.org

PyTorch是一个开源Python机器学习,基于Torch英语Torch (machine_learning)[2][3][4],底层由C++实现,应用于人工智能领域,如自然语言处理[5] 它主要由Facebook的人工智能研究团队开发,[6][7][8]并且被用于Uber概率编程软件Pyro。[9]

PyTorch主要有两大特征:[10]

PyTorch包括torch.nn、torch.optim等子模块[13]

参考文献

  1. ^ 1.0 1.1 Release 2.7.0. 2025年4月23日 [2025年4月27日]. 
  2. ^ Yegulalp, Serdar. Facebook brings GPU-powered machine learning to Python. InfoWorld. 19 January 2017 [11 December 2017]. (原始内容存档于2018-07-12). 
  3. ^ Lorica, Ben. Why AI and machine learning researchers are beginning to embrace PyTorch. O'Reilly Media. 3 August 2017 [11 December 2017]. (原始内容存档于2019-05-17). 
  4. ^ Ketkar, Nikhil. Deep Learning with Python. Apress, Berkeley, CA. 2017: 195–208 [2018-10-02]. ISBN 9781484227657. doi:10.1007/978-1-4842-2766-4_12. (原始内容存档于2018-07-12) (英语). 
  5. ^ Natural Language Processing (NLP) with PyTorch — NLP with PyTorch documentation. dl4nlp.info. [2017-12-18]. (原始内容存档于2019-06-21) (英语). 
  6. ^ Patel, Mo. When two trends fuse: PyTorch and recommender systems. O'Reilly Media. 2017-12-07 [2017-12-18]. (原始内容存档于2019-03-30) (英语). 
  7. ^ Mannes, John. Facebook and Microsoft collaborate to simplify conversions from PyTorch to Caffe2. TechCrunch. [2017-12-18]. (原始内容存档于2020-07-06) (英语). FAIR is accustomed to working with PyTorch — a deep learning framework optimized for achieving state of the art results in research, regardless of resource constraints. Unfortunately in the real world, most of us are limited by the computational capabilities of our smartphones and computers. 
  8. ^ Arakelyan, Sophia. Tech giants are using open source frameworks to dominate the AI community. VentureBeat. 2017-11-29 [2017-12-18]. (原始内容存档于2019-03-30) (美国英语). 
  9. ^ Uber AI Labs Open Sources Pyro, a Deep Probabilistic Programming Language. Uber Engineering Blog. 2017-11-03 [2017-12-18]. (原始内容存档于2017-12-25) (美国英语). 
  10. ^ PyTorch – About. pytorch.org. [2018-06-11]. (原始内容存档于2018-06-15). 
  11. ^ R.E. Wengert. A simple automatic derivative evaluation program. Comm. ACM. 1964, 7: 463–464. doi:10.1145/355586.364791. 
  12. ^ Bartholomew-Biggs, Michael; Brown, Steven; Christianson, Bruce; Dixon, Laurence. Automatic differentiation of algorithms (PDF). Journal of Computational and Applied Mathematics. 2000, 124 (1-2): 171–190. Bibcode:2000JCoAM.124..171B. doi:10.1016/S0377-0427(00)00422-2. 
  13. ^ 13.0 13.1 神经网络与PyTorch实战 Application of Neural Network and PyTorch. 机械工业出版社. 2018. ISBN 9787111605775. 

外部链接