跳转到内容

PyTorch

维基百科,自由的百科全书

这是本页的一个历史版本,由董辰兴留言 | 贡献2018年10月4日 (四) 01:35编辑。这可能和当前版本存在着巨大的差异。

PyTorch
原作者Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan
首次发布2016年10月,​8年前​(2016-October
当前版本0.4.1(2018年7月26日,​6年前​(2018-07-26
预览版本1.0 rc1(2018年10月2日,​6年前​(2018-10-02
源代码库github.com/pytorch/pytorch
编程语言Python, C++, CUDA
操作系统Linux, macOS, Windows
类型机器学习深度学习
许可协议 編輯維基數據鏈接
网站pytorch.org

PyTorch是一个开源Python机器学习,基于Torch英语Torch (machine_learning)[1][2][3] 应用于人工智能领域,如自然语言处理[4] 它最初由Facebook的人工智能研究团队开发,[5][6][7] 并且被用于Uber概率编程软件"Pyro"。[8]

PyTorch主要有两大特征:[9]

参考文献

  1. ^ Yegulalp, Serdar. Facebook brings GPU-powered machine learning to Python. InfoWorld. 19 January 2017 [11 December 2017]. 
  2. ^ Lorica, Ben. Why AI and machine learning researchers are beginning to embrace PyTorch. O'Reilly Media. 3 August 2017 [11 December 2017]. 
  3. ^ Ketkar, Nikhil. Deep Learning with Python. Apress, Berkeley, CA. 2017: 195–208. ISBN 9781484227657. doi:10.1007/978-1-4842-2766-4_12 (英语). 
  4. ^ Natural Language Processing (NLP) with PyTorch — NLP with PyTorch documentation. dl4nlp.info. [2017-12-18] (英语). 
  5. ^ Patel, Mo. When two trends fuse: PyTorch and recommender systems. O'Reilly Media. 2017-12-07 [2017-12-18] (英语). 
  6. ^ Mannes, John. Facebook and Microsoft collaborate to simplify conversions from PyTorch to Caffe2. TechCrunch. [2017-12-18] (英语). FAIR is accustomed to working with PyTorch — a deep learning framework optimized for achieving state of the art results in research, regardless of resource constraints. Unfortunately in the real world, most of us are limited by the computational capabilities of our smartphones and computers. 
  7. ^ Arakelyan, Sophia. Tech giants are using open source frameworks to dominate the AI community. VentureBeat. 2017-11-29 [2017-12-18] (美国英语). 
  8. ^ Uber AI Labs Open Sources Pyro, a Deep Probabilistic Programming Language. Uber Engineering Blog. 2017-11-03 [2017-12-18] (美国英语). 
  9. ^ PyTorch – About. pytorch.org. [2018-06-11]. 
  10. ^ R.E. Wengert. A simple automatic derivative evaluation program. Comm. ACM. 1964, 7: 463–464. doi:10.1145/355586.364791. 
  11. ^ Bartholomew-Biggs, Michael; Brown, Steven; Christianson, Bruce; Dixon, Laurence. Automatic differentiation of algorithms (PDF). Journal of Computational and Applied Mathematics. 2000, 124 (1-2): 171–190. Bibcode:2000JCoAM.124..171B. doi:10.1016/S0377-0427(00)00422-2.