跳转到内容

多值函数

维基百科,自由的百科全书

这是本页的一个历史版本,由Wolfch留言 | 贡献2016年12月31日 (六) 10:36 (添加{{unreferenced}}标记到条目)编辑。这可能和当前版本存在着巨大的差异。

圖中的不是真正的函數,因為X集合中的3對應Y集合中的二個元素bc

多值函数(multivalued function,也稱為multifunction)為一數學名詞,是一種二元关系,其中每一個輸入都至少會對應一個輸出,而且有些會對應不止一個輸出。

嚴格來說,良好定義的函数在其定義域內的每個輸入都對應一個輸出,而且只對應一個輸出。因此多值函数本身用詞不當英语misnomer,因為只有單值函數才符合函數的定義。多值函數當當作為非单射函數的「反函數」。嚴格來說非单射函數沒有反函數(其「反函數」不滿足單值的定義),只存在逆關係英语inverse relation。多值函數即為非单射函數的逆關係。

例子

  • 每個大於0的實數都有二個實數的平方根,例如4的平方根是{−2, +2}.,0的平方根是0。
  • 一般而言,許多不為0的複數都有二個平方根、三個立方根、n個n次方根,只有0的n次方根為0。
  • 複對數函數是多值函數。為實數)的值是,其中為任意整數。 .
  • 反三角函數為週期性的多值函数,例如
因此,arctan(1)在本質上會對應許多數值:π/4, 5π/4, −3π/4等。若限制其tan x的定義域在π/2 < x < π/2,此區域下tan x為單純遞增,則arctan(x)的值域會在π/2 < y < π/2。這種限定區域下的值稱為主值
  • 不定積分也可以視為是多值函数,函數f的不定積分是一個函數的集合,集合中的每一個函數微分後都是f,因此不定積分存在一積分常數,因為積分常數不論本身數值多少,微分後都是0。

相關條目

參考資料