Jump to content

Non-coding DNA

From Simple English Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Bladderwort (Utricularia) has 3% noncoding DNA,[1] which is low for flowering plants.

Non-coding DNA sequences are parts of an organism's DNA which do not code for protein sequences. It is often called junk DNA.[2]

Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, ribosomal RNA, and regulatory RNAs). Other DNA sequences are not transcribed, or give rise to RNA transcripts of unknown function. The amount of non-coding DNA varies greatly between species. For example, over 98% of the human genome is noncoding DNA,[3] while only about 2% of a typical bacterial genome is non-coding DNA.

At first, much non-coding DNA had no known biological function. It was called junk DNA, particularly in the press. But many non-coding sequences are functional. These include genes for functional RNA molecules and DNA sequences such as "start replication" signals, centromeres, and telomeres.

Other noncoding sequences have not-yet-discovered functions. This is inferred from the high levels of sequence similarity seen in different species of DNA.

The Encyclopedia of DNA Elements (ENCODE) project[4] suggested in September 2012 that over 80% of DNA in the human genome "serves some purpose, biochemically speaking".[5] This conclusion was strongly criticized by some other scientists.[6][7]

Historical note

The term "junk DNA" was first used by Charles Ehret and Gérard de Haller in a paper.[8] Widely influential was Susuno Ohno's 1972 paper.[9] The term has been replaced by the more neutral term "non-coding DNA".

References

  1. "Worlds record breaking plant: deletes its noncoding "Junk" DNA". Design & Trend. 2013. Archived from the original on 2016-03-25. Retrieved 2013-06-04.
  2. Carey, Nessa 2017. Junk DNA: a journey through the dark matter of the genome. Columbia University Press. ISBN 9780231539418
  3. Elgar G. & Vavouri T. 2008. Tuning in to the signals: non-coding sequence conservation in vertebrate genomes. Trends in Genetics. 24 (7): 344–52. [1][permanent dead link]
  4. The ENCODE Project Consortium (2012). "An integrated encyclopedia of DNA elements in the human genome". Nature. 489 (7414): 57–74. Bibcode:2012Natur.489...57T. doi:10.1038/nature11247. PMC 3439153. PMID 22955616.
  5. Pennisi, E. (2012). "Genomics. ENCODE project writes eulogy for junk DNA". Science. 337 (6099): 1159, 1161. doi:10.1126/science.337.6099.1159. PMID 22955811.
  6. Robin McKie (24 February 2013). "Scientists attacked over claim that 'junk DNA' is vital to life". The Observer.
  7. Graur, Dan; et al. (2013). "On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE". Genome Biology and Evolution. 5 (3): 578–590. doi:10.1093/gbe/evt028. PMC 3622293. PMID 23431001.
  8. Ehret C.F. & De Haller G. 1963. Origin, development, and maturation of organelles and organelle systems of the cell surface in Paramecium. Journal of Ultrastructure Research 23: SUPPL6:1–42.
  9. Ohno S. 1972. So much junk in our genome. In Brookhaven Symposia in Biology. New York: Gordon & Breach. ed: Smith H.H. 23: p366–370.