Jump to content

Linear mapping

From Simple English Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Mirroring along an axis is an example of a linear mapping

In mathematics (particularly in linear algebra), a linear mapping (or linear transformation) is a mapping f between vector spaces that preserves addition and scalar multiplication.[1][2][3]

Definition

Let V and W be vector spaces over the same field K. A function f: VW is said to be a linear mapping if for any two vectors x and y in V and any scalar (number) α in K, the following two conditions are satisfied:

Sometimes, a linear mapping is called a linear function.[4] However, in basic mathematics, a linear function means a function whose graph is a line. The set of all linear mappings from the vector space V to vector space W can be written as .[5]

References

  1. Lang, Serge (1987). Linear algebra. New York: Springer-Verlag. p. 51. ISBN 9780387964126.
  2. Lax, Peter (2007). Linear Algebra and Its Applications, 2nd ed. Wiley. p. 19. ISBN 978-0-471-75156-4. (in English)
  3. Tanton, James (2005). Encyclopedia of Mathematics, Linear Transformation. Facts on File, New York. p. 316. ISBN 0-8160-5124-0. (in English)
  4. Sloughter, Dan (2001). "The Calculus of Functions of Several Variables, Linear and Affine Functions" (PDF). Retrieved 1 February 2014.
  5. "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-10-12.