Hyperbolic functions
![]() | ImprovedWikiImprovment has asked for quick deletion of this article. The reason for asking for deletion is: A3 (Complex article from another Wikipedia)
If you think this article should not be deleted, please add {{Wait}} below this message, and then say why on this article's talk page. Please do not remove this notice from pages that you have created yourself. Administrators, remember to check what links here, the page history (last edit), and the page log, before deletion. (Tagged since 07:50, 19 October 2020 (UTC)) |
![]() | Someone thinks this page should not be quickly deleted.
Someone thinks this page should not be quickly deleted, and has asked for it to be left on Wikipedia. Please talk about it on this page's talk page. |
Simple English Wikipedia does not use short description at this time. Please remove this template. This template categorizes the page into Category:Pages with short description, where the template may be removed from pages found there.

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined for the unit hyperbola rather than on the unit circle: just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the hyperbola.
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations, cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics.
The basic hyperbolic functions are:[1][2]
- hyperbolic sine "sinh" (/ˈsɪŋ, ˈsɪntʃ, ˈʃaɪn/),[3]
- hyperbolic cosine "cosh" (/ˈkɒʃ, ˈkoʊʃ/),[4]
from which are derived:[5]
- hyperbolic tangent "tanh" (/ˈtæŋ, ˈtæntʃ, ˈθæn/),[6]
- hyperbolic cosecant "csch" or "cosech" (/ˈkoʊsɛtʃ, ˈkoʊʃɛk/[4])
- hyperbolic secant "sech" (/ˈsɛtʃ, ˈʃɛk/),[7]
- hyperbolic cotangent "coth" (/ˈkɒθ, ˈkoʊθ/),[8][9]
corresponding to the derived trigonometric functions.
The inverse hyperbolic functions are:[1]
- area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")[10][11][12]
- area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh"
- and so on.

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.
Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[13]
Definitions


There are various equivalent ways to define the hyperbolic functions.
Exponential definitions


In terms of the exponential function:[2][5]
- Hyperbolic sine: the odd part of the exponential function, that is
- Hyperbolic cosine: the even part of the exponential function, that is
- Hyperbolic tangent:
- Hyperbolic cotangent: for x ≠ 0,
- Hyperbolic secant:
- Hyperbolic cosecant: for x ≠ 0,
Useful relations
The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule[14] states that one can convert any trigonometric identity for , , or and into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs.
Odd and even functions:
Hence:
Thus, cosh x and sech x are even functions; the others are odd functions.
Hyperbolic sine and cosine satisfy:
the last of which is similar to the Pythagorean trigonometric identity.
One also has
for the other functions.
Comparison with circular functions

The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.
Since the area of a circular sector with radius r and angle u (in radians) is r2u/2, it will be equal to u when r = √2. In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red sectors together depict an area and hyperbolic angle magnitude.
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
Relationship to the exponential function
The decomposition of the exponential function in its even and odd parts gives the identities
and
The first one is analogous to Euler's formula
Additionally,
See also

References
- ↑ 1.0 1.1 "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-08-29.
- ↑ 2.0 2.1 Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29.
- ↑ (1999) Collins Concise Dictionary, 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4, p. 1386
- ↑ 4.0 4.1 Collins Concise Dictionary, p. 328
- ↑ 5.0 5.1 "Hyperbolic Functions". www.mathsisfun.com. Retrieved 2020-08-29.
- ↑ Collins Concise Dictionary, p. 1520
- ↑ Collins Concise Dictionary, p. 1340
- ↑ Collins Concise Dictionary, p. 329
- ↑ tanh
- ↑ Woodhouse, N. M. J. (2003), Special Relativity, London: Springer, p. 71, ISBN 978-1-85233-426-0
- ↑ Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0
- ↑ Some examples of using arcsinh found in Google Books.
- ↑ Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
- ↑ Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae". The Mathematical Gazette. 2 (34): 189. doi:10.2307/3602492. JSTOR 3602492.
External links
- Template:Springer
- Hyperbolic functions on PlanetMath
- GonioLab: Visualization of the unit circle, trigonometric and hyperbolic functions (Java Web Start)
- Web-based calculator of hyperbolic functions