Jump to content

Inverse function

From Simple English Wikipedia, the free encyclopedia
Revision as of 02:36, 8 September 2020 by Miaumee (talk | changes) (General revision throughout the page. Improved inline citations. Rephrased sentences to prevent flow disruption. Minor punctuation fixes. Broken down lengthy sentences.Expanded Related Pages section. Added References section.)

An inverse function is a concept of mathematics. A function will calculate some output , given some input . This is usually written . The inverse function does the reverse. Let's say is the inverse function of , then . Or otherwise put, . An inverse function to is usually called .[1] It is not to be confused with , which is a reciprocal function.[2]

Examples

If over real , then

To find the inverse function, swap the roles of and and solve for . For example, would turn to , and then . This shows that the inverse function of is .

Not all functions have inverse functions: for example, function has none (because , and cannot be both 1 and -1), but every binary relation has its own inverse relation.

In some cases, finding the inverse of a function can be very difficult to do.

References

  1. "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-09-08.
  2. Weisstein, Eric W. "Inverse Function". mathworld.wolfram.com. Retrieved 2020-09-08.