Jump to content

Numerical linear algebra

From Simple English Wikipedia, the free encyclopedia

In the field of numerical analysis, numerical linear algebra is an area to study methods to solve problems in linear algebra by numerical computation[1][2][3]. The following problems will be considered in this area:

  1. Numerically solving a system of linear equations[4].
  2. Numerically solving an eigenvalue problem for a given matrix[5].
  3. Computing approximate values of a matrix-valued function[6].

Numerical errors can occur in any kind of numerical computation including the area of numerical linear algebra. Errors in numerical linear algebra are considered in another area called "validated numerics"[7].

References

  1. Demmel, J. W. (1997). Applied numerical linear algebra. SIAM.
  2. Ciarlet, P. G., Miara, B., & Thomas, J. M. (1989). Introduction to numerical linear algebra and optimization. Cambridge University Press.
  3. Trefethen, Lloyd; Bau III, David (1997). Numerical Linear Algebra (1st ed.). Philadelphia: SIAM.
  4. Saad, Yousef (2003). Iterative methods for sparse linear systems (2nd ed.). SIAM.
  5. David S. Watkins (2008), The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM.
  6. Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.
  7. Rump, S. M. (2010). Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19, 287-449.

Further Reading

  • Golub, Gene H.; Van Loan, Charles F. (1996). Matrix Computations (3rd ed.). Baltimore: The Johns Hopkins University Press.
  • Matrix Iterative Analysis, Varga, Richard S., Springer, 2000.
  • Higham, N. J. (2002). Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics.
  • Liesen, J., & Strakos, Z. (2012). Krylov subspace methods: principles and analysis. OUP Oxford.