Jump to content

Numerical linear algebra

From Simple English Wikipedia, the free encyclopedia
Revision as of 11:37, 8 April 2020 by MathXplore (talk | changes) (simplified en:Numerical linear algebra oldid=948953682)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In the field of numerical analysis, numerical linear algebra is an area to study methods to solve problems in linear algebra by numerical computation[1][2][3]. The following problems will be considered in this area:

  1. Numerically solving a system of linear equations[4].
  2. Numerically solving an eigenvalue problem for a given matrix[5].
  3. Computing approximate values of a matrix-valued function[6].

Numerical errors can occur in any kind of numerical computation including the area of numerical linear algebra. Errors in numerical linear algebra are considered in another area called "validated numerics"[7].

References

  1. Demmel, J. W. (1997). Applied numerical linear algebra. SIAM.
  2. Ciarlet, P. G., Miara, B., & Thomas, J. M. (1989). Introduction to numerical linear algebra and optimization. Cambridge University Press.
  3. Trefethen, Lloyd; Bau III, David (1997). Numerical Linear Algebra (1st ed.). Philadelphia: SIAM.
  4. Saad, Yousef (2003). Iterative methods for sparse linear systems (2nd ed.). SIAM.
  5. David S. Watkins (2008), The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM.
  6. Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.
  7. Rump, S. M. (2010). Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19, 287-449.