Jump to content

Linear regression

From Simple English Wikipedia, the free encyclopedia
Revision as of 17:49, 17 December 2013 by Eptalon (talk | changes) (Created page with "'''Linear regression''' is a special case of regression analysis, which tries to explain the relationship betweeen a dependent variable and one or more explanatory v...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Linear regression is a special case of regression analysis, which tries to explain the relationship betweeen a dependent variable and one or more explanatory variables. Mathematical functions are used to predict or estimate the value of the depenent variables. In linear regression, these functions are linear.

Linear regression was the first type of regression analysis to be studied rigorously, and to be used in practical applications. This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the following two broad categories:

  • If the goal is prediction, or forecasting, or reduction, linear regression can be used to fit a predictive model to an observed data set of y and X values. After developing such a model, if an additional value of X is then given without its accompanying value of y, the fitted model can be used to make a prediction of the value of y.
  • Given a variable y and a number of variables X1, ..., Xp that may be related to y, linear regression analysis can be applied to quantify the strength of the relationship between y and the Xj, to assess which Xj may have no relationship with y at all, and to identify which subsets of the Xj contain redundant information about y.

Linear regression models are often fitted using the least squares approach, but they may also be fitted in other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations regression), or by minimizing a penalized version of the least squares loss function as in ridge regression. Conversely, the least squares approach can be used to fit models that are not linear models. Thus, although the terms "least squares" and "linear model" are closely linked, they are not synonymous.