Jump to content

Linear programming

From Simple English Wikipedia, the free encyclopedia
Revision as of 23:16, 16 January 2012 by Eptalon (talk | changes)

Linear programming or Linear optimisation is a field of mathematics that deals with finding optimal values or solutions that can be described with linear equations and inequalities. Very often this involves finding the minimal or maximal values, given some conditions. Linear programming is often used for problem where no exact solution is known, for example for planning traffic flows. Limnear programming is one of the main methods used in Operations research. Linear optimization is a special case of Convex optimization. It forms the basis for several methods of solving problems of Integer programming. In many cases, the solutionms of linear programs can be mapped to Polyhedra, which allows to solve and modeli certain problems geometrically.

In the case of linear programming, the word programming should be seen as planning; George Dantzig coined the term in the 1940s, long before computers were used to solve such problems. Looking at the information theory complexity, linear programming problems are simple, and can be solved efficiently using algorithms such as the interior point method. In many cases, the Simplex algorithm developed by Dantzig has proven to be very fast, even though its complexity is exponential, in the worst case.

The earliest linear programming was first developed by Leonid Kantorovich in 1939.