Jump to content

Linear algebra

Frae Wikipedia, the free beuk o knawledge
The three-dimensional Euclidean space R3 is a vector space, an lines an planes passin through the origin are vector subspaces in R3.

Linear algebra is the branch o mathematics concernin vector spaces, eften finite or coontably infinite dimensional, as well as linear cairtins atween such spaces. Such an investigation is initially motivatit bi a seestem o linear equations containin several unkents. Such equations are naiturally represented uisin the formalism o matrices an vectors.[1]

References

  1. Weisstein, Eric. "Linear Algebra". From MathWorld--A Wolfram Web Resource. Wolfram. Retrieved 16 Apryle 2012.

Further reading

History

  • Fearnley-Sander, Desmond, "Hermann Grassmann and the Creation of Linear Algebra", American Mathematical Monthly 86 (1979), pp. 809–817.
  • Grassmann, Hermann (1844), Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert, Leipzig: O. Wigand

Introduction

Advancit

  • Axler, Sheldon (26 Februar 2004), Linear Algebra Done Right (2nd ed.), Springer, ISBN 978-0-387-98258-8
  • Bhatia, Rajendra (15 November 1996), Matrix Analysis, Graduate Texts in Mathematics, Springer, ISBN 978-0-387-94846-1
  • Demmel, James W. (1 August 1997), Applied Numerical Linear Algebra, SIAM, ISBN 978-0-89871-389-3
  • Dym, Harry (2007), Linear Algebra in Action, AMS, ISBN 978-0-8218-3813-6
  • Gantmacher, Felix R. (2005), Applications of the Theory of Matrices, Dover Publications, ISBN 978-0-486-44554-0
  • Gantmacher, Felix R. (1990), Matrix Theory Vol. 1 (2nd ed.), American Mathematical Society, ISBN 978-0-8218-1376-8
  • Gantmacher, Felix R. (2000), Matrix Theory Vol. 2 (2nd ed.), American Mathematical Society, ISBN 978-0-8218-2664-5
  • Gelfand, Israel M. (1989), Lectures on Linear Algebra, Dover Publications, ISBN 978-0-486-66082-0
  • Glazman, I. M.; Ljubic, Ju. I. (2006), Finite-Dimensional Linear Analysis, Dover Publications, ISBN 978-0-486-45332-3
  • Golan, Johnathan S. (Januar 2007), The Linear Algebra a Beginning Graduate Student Ought to Know (2nd ed.), Springer, ISBN 978-1-4020-5494-5
  • Golan, Johnathan S. (August 1995), Foundations of Linear Algebra, Kluwer, ISBN 0-7923-3614-3
  • Golub, Gene H.; Van Loan, Charles F. (15 October 1996), Matrix Computations, Johns Hopkins Studies in Mathematical Sciences (3rd ed.), The Johns Hopkins University Press, ISBN 978-0-8018-5414-9
  • Greub, Werner H. (16 October 1981), Linear Algebra, Graduate Texts in Mathematics (4th ed.), Springer, ISBN 978-0-8018-5414-9
  • Hoffman, Kenneth; Kunze, Ray (1971), Linear algebra (2nd ed.), Englewood Cliffs, N.J.: Prentice-Hall, Inc., MR 0276251
  • Halmos, Paul R. (20 August 1993), Finite-Dimensional Vector Spaces, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-90093-3
  • Friedberg, Stephen H.; Insel, Arnold J.; Spence, Lawrence E. (7 September 2018), Linear Algebra (5th ed.), Pearson, ISBN 978-0-13-486024-4
  • Horn, Roger A.; Johnson, Charles R. (23 Februar 1990), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
  • Horn, Roger A.; Johnson, Charles R. (24 Juin 1994), Topics in Matrix Analysis, Cambridge University Press, ISBN 978-0-521-46713-1
  • Lang, Serge (9 Mairch 2004), Linear Algebra, Undergraduate Texts in Mathematics (3rd ed.), Springer, ISBN 978-0-387-96412-6
  • Marcus, Marvin; Minc, Henryk (2010), A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, ISBN 978-0-486-67102-4
  • Meyer, Carl D. (15 Februar 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived frae the original on 31 October 2009
  • Mirsky, L. (1990), An Introduction to Linear Algebra, Dover Publications, ISBN 978-0-486-66434-7
  • Roman, Steven (22 Mairch 2005), Advanced Linear Algebra, Graduate Texts in Mathematics (2nd ed.), Springer, ISBN 978-0-387-24766-3
  • Shafarevich, I. R.; Remizov, A. O (2012), Linear Algebra and Geometry, Springer, ISBN 978-3-642-30993-9
  • Shilov, Georgi E. (1 Juin 1977), Linear algebra, Dover Publications, ISBN 978-0-486-63518-7
  • Shores, Thomas S. (6 December 2006), Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-33194-2
  • Smith, Larry (28 Mey 1998), Linear Algebra, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-98455-1
  • Trefethen, Lloyd N.; Bau, David (1997), Numerical Linear Algebra, SIAM, ISBN 978-0-898-71361-9

Guides

  • Leduc, Steven A. (1 Mey 1996), Linear Algebra (Cliffs Quick Review), Cliffs Notes, ISBN 978-0-8220-5331-6
  • Lipschutz, Seymour; Lipson, Marc (6 December 2000), Schaum's Outline of Linear Algebra (3rd ed.), McGraw-Hill, ISBN 978-0-07-136200-9
  • Lipschutz, Seymour (1 Januar 1989), 3,000 Solved Problems in Linear Algebra, McGraw–Hill, ISBN 978-0-07-038023-3
  • McMahon, David (28 October 2005), Linear Algebra Demystified, McGraw–Hill Professional, ISBN 978-0-07-146579-3
  • Zhang, Fuzhen (7 Apryle 2009), Linear Algebra: Challenging Problems for Students, The Johns Hopkins University Press, ISBN 978-0-8018-9125-0

See also