Jump to content

អនុគមន៍ត្រីកោណមាត្រច្រាស់

ពីវិគីភីឌា
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

នៅក្នុងគណិតវិទ្យាអនុគមន៍ត្រីកោណមាត្រច្រាស់ ឬអនុគមន៍ស៊ីក្លូមេទ្រីក គឺជាអនុគមន៍ច្រាស់នៃអនុគមន៍ត្រីកោណមាត្រ។ អនុគមន៍ច្រាស់សំខាន់ៗត្រូវបានដាក់បញ្ចូលក្នុងតារាងខាងក្រោម។

ឈ្មោះ កំនត់សំគាល់ទូទៅ និយមន័យ ដែនកំនត់នៃ x ចំពោះលទ្ធផលពិត ចន្លោះនៃតំលៃគោលទូទៅ
អាកស៊ីនុស y = arcsin(x) x = sin(y) ពី −1 ដល់ +1 −π/2 ≤ y ≤ π/2
អាកកូស៊ីនុស y = arccos(x) x = cos(y) ពី −1 ដល់ +1 0 ≤ y ≤ π
អាកតង់សង់ y = arctan(x) x = tan(y) ទាំងអស់ −π/2 < y < π/2
អាកកូតង់សង់ y = arccot(x) x = cot(y) ទាំងអស់ 0 < y < π
អាកសេកង់ y = arcsec(x) x = sec(y) ពី −∞ ដល់ −1 ឬ ពី 1 ដល់ ∞ 0 ≤ y < π/2 ឬ π/2 < y ≤ π
អាកកូសេកង់ y = arccsc(x) x = csc(y) ពី −∞ ដល់ −1 ឬ ពី 1 ដល់ ∞ −π/2 ≤ y < 0 ឬ 0 < y ≤ π/2

ប្រសិនបើ x ជាចំនួនកុំផ្លិច នោះដែនកំនត់នៃ y អាចអនុវត្តបានតែចំពោះផ្នែកពិតប៉ុណ្ណោះ។

កំនត់សំគាល់ ជាដើម ជាញឹកញាប់ត្រូវបានគេប្រើប្រាស់ចំពោះ arcsin, arccos ជាដើម។ ប៉ន្តែការសន្មតនេះវាអាចធ្វើអោយមានការភាន់ច្រលំជាមួយ​កន្សោមមួយចំនួនដូចជា

តំលៃគោលនៃ អនុគមន៍ f(x) = arcsin(x) និង f(x) = arccos(x) នៅក្នុងប្លង់ដេកាត
តំលៃគោលនៃ អនុគមន៍ f(x) = arctan(x) និង f(x) = arccot(x) នៅក្នុងប្លង់ដេកាត
តំលៃគោលនៃ អនុគមន៍ f(x) = arcsec(x) និង f(x) = arccsc(x) នៅក្នុងប្លង់ដេកាត

ទំនាក់ទំនងក្នុងអនុគមន៍ត្រីកោណមាត្រច្រាស់

<math>\arccos x = \frac{\pi}{2} - \arcsin x </math>


<math>\arccot x = \frac{\pi}{2} - \arctan x </math>


<math>\arccsc x = \frac{\pi}{2} - \arcsec x </math>

ចំពោះមុំផ្ទុយ

<math>\arcsin (-x) = - \arcsin x \!</math>
<math>\arccos (-x) = \pi - \arccos x \!</math>
<math>\arctan (-x) = - \arctan x \!</math>
<math>\arccot (-x) = \pi - \arccot x \!</math>
<math>\arcsec (-x) = \pi - \arcsec x \!</math>
<math>\arccsc (-x) = - \arccsc x \!</math>

ចំពោះមុំចំរាស់:

<math>\arccos \frac{1}{x} \,= \arcsec x </math>


<math>\arcsin \frac{1}{x} \,= \arccsc x </math>


<math>\arctan \frac{1}{x} = \frac{\pi}{2} - \arctan x =\arccot x, \ </math> ប្រសិនបើ <math>\ x > 0</math>


<math>\arctan \frac{1}{x} = -\frac{\pi}{2} - \arctan x = -\pi + \arccot x, \ </math> ប្រសិនបើ <math>\ x < 0</math>


<math>\arccot \frac{1}{x} = \frac{\pi}{2} - \arccot x =\arctan x, \ </math>

ដេរីវេនៃអនុគមន៍ត្រីកោណមាត្រច្រាស់

ចំពោះតែតំលៃនៃ

ចំពោះដេរីវេធម្មតា៖ ប្រសិនបើ យើងបាន៖

អនុគមន៍ត្រីកោណមាត្រច្រាស់ជាកន្សោមអាំងតេក្រាល

នៅពេលស្មើ 1 នោះអាំងតេក្រាលដែលមានដែនកំនត់កំនត់ ជាimproper integral ប៉ុន្តែវានៅតែអាចកំនត់បាន។


ស៊េរីអានន្ត






Leonhard Euler បានរកឃើញស៊េរីដែលមានភាពប្រសើរជាច្រើនបន្ថែមទៀតសំរាប់អាកតង់សង់ដូចខាងក្រោម៖

(សំគាល់៖ តួក្នុងផលបូកចំពោះ n= 0 គឺផលគុណទទេ ដែលស្មើ 1)

វាអាចសំដែងដោយ៖

ប្រភាគបន្តបន្ទាប់ចំពោះអាកតង់សង់

ចំពោះភាពឆ្លាស់នៃស៊េរីស្វ័យគុណសំពោះអាកតង់សង់​គឺវាមានលក្ខណៈជាប្រភាគបន្តបន្ទាប់។


វាពិតនីក្នុងបំណែកប្លង់កុំផ្លិច។ មានពីរបំណែកពី −i ដល់ចំនុចដែលមានតំលៃអានន្ត។ និងមួយបំណែកទៀតពី i ដល់ចំនុចត្រង់អានន្ត។ វាដំណើរការឥតខ្ចោះនៅចន្លោះពី −១ ដល់ ១ ។

អាំងតេក្រាលមិនកំនត់នៃអនុគមន៍ត្រីកោណមាត្រច្រាស់

ចំពោះតំលៃពិត និងតំលៃកុំផ្លិចនៃ x

ចំពោះតំលៃពិតនៃ x≥1


ទាំងអស់នេះអាចទាញបានដោយប្រើអាំងតេក្រាលដោយផ្នែក និងដេរីវេធម្មតា បង្ហាញដូចខាងលើe.

សំរាយបញ្ជាក់ឧទាហរណ៍

ដោយប្រើ តាង

គេបាន

ដោយជំនួស ។ នោះ និង

ជំនួសត្រឡប់វិញ x គេបាន

វិធីសាស្រ្តចំបងក្នុងការគណនាអាំងតេក្រាលត្រីកោណមាត្រច្រាស់

  • ដើម្បីគណនាអាំងតេក្រាលនៃអាកស៊ីនុស សូមប្រើ៖
  • ដើម្បីគណនាអាំងតេក្រាលនៃអាកកូស៊ីនុស សូមប្រើ៖
  • ដើម្បីគណនាអាំងតេក្រាលនៃអាកតង់សង់ចំពោះ x ក្បែរសូន្យ សូមប្រើវិធីសាស្រ្តគណនាអាកតង់សង់នៃប្រភាគបន្តបន្ទាប់ខាងលើ។ ដើម្បីគណនាអាកតងសង់ចំពោះតំលៃ x ផ្សេងៗទៀត សូមប្រើ៖
  • ដើម្បីគណនាអាកកូតង់សង់ សូមប្រើ៖
  • ដើម្បីគណនាអាកសេកង់ សូមប្រើ៖
  • ដើម្បីគណនាអាកកូសេកង់ សូមប្រើ៖

ទំរង់លោការីត

អនុគមន៍ទាំងនេះអាចសំដែងជាទំរង់លោការីតដោយប្រើ លោការីតកុំផ្លិច។ នេះជាការពន្លាតដែនកំនត់របស់អនុគមន៍ទាំងនេះទៅក្នុងប្លង់កុំផ្លិច

សំរាយបញ្ជាក់នៃទំនាក់ទំនងទាំងនេះ​ គឺធ្វើតាមរយៈពន្លាតវាក្នុង​ទំរង់អិចស្ប៉ូណង់ស្យែលនៃ​អនុគមន៍ត្រីកោណមាត្រ

សំរាយបញ្ជាក់ឧទាហរណ៍

   (និយមន័យអិចស្ប៉ូណង់ស្យែលនៃស៊ីនុស)

តាង

គេបាន

   (ដំណោះស្រាយចំពោះ)
   (យកផ្នែកខាងវិជ្ជមាន)
  Q.E.D.
អនុគមន៍ត្រីកោណមាត្រច្រាស់ក្នុងប្លង់កុំផ្លិច'

រូបមន្តអាកតង់សង់បន្ថែម

សំរាយបញ្ជាក់

ចាប់ផ្តើមពី

និងតាង

បំរើបំរាស់ក្នុងការអនុវត្តន៍

ត្រីកោណកែង
ត្រីកោណកែង

អនុគមន៍ត្រីកោណមាត្រ​មានសារៈសំខាន់នៅពេលគេចង់រករ​ង្វាស់មុំដែលនៅសល់ពីរផ្សេងទៀតនៃត្រីកោណកែង ដែលគេស្គាល់រួចជាស្រេចនូវ​រង្វាស់ប្រវែងនៃត្រីកោណកែងនេះ។ ដោយប្រើអនុគមន៍ត្រីកោណមាត្រច្រាស់

សំគាល់៖ opposite = ជ្រុងឈម, hypotenuse = អ៊ីប៉ូតេនុស និង adjacent = ជ្រុងជាប់

ជាញឹកញាប់ អ៊ីប៉ូតេនុសជារង្វាស់ជ្រុងដែលគេមិនប្រាប់ និងចាំបាច់ត្រូវរកមុនពេលប្រើប្រាស់អាក់ស៊ីនុស ឬ អាកកូស៊ីនុស។ អ្នកអាចគណនាមុំនៃត្រីកោណដោយមិនចាំបាច់ដឹងប្រវែងអ៊ីប៉ូតេនុសក៏បាន។