The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
ក្នុងគណិតវិទ្យា វិធីសាស្រ្តស៊េរីស្វ័យគុណ (power series method) គឺជាវិធីសាស្រ្តរកចំលើយរបស់ស៊េរីស្វ័យគុណ អោយទៅជាសមីការឌីផេរ៉ងើស្យែ ។
វិធីសាស្រ្ត
ចំពោះសមីការឌីផេរ៉ង់ស្យែលលំដាប់២
a
2
(
z
)
f
″
(
z
)
+
a
1
(
z
)
f
′
(
z
)
+
a
0
(
z
)
f
(
z
)
=
0
{\displaystyle a_{2}(z)f''(z)+a_{1}(z)f'(z)+a_{0}(z)f(z)=0\;\!}
ឧបមាថា a 2 មិនសូន្យគ្រប់ z ។ នោះយើងអាចចែកវាហើយទទួលបាន
f
″
+
a
1
(
z
)
a
2
(
z
)
f
′
+
a
0
(
z
)
a
2
(
z
)
f
=
0
{\displaystyle f''+{a_{1}(z) \over a_{2}(z)}f'+{a_{0}(z) \over a_{2}(z)}f=0}
ហើយឧបមាទៀតថា a 1 /a 2 និង a 0 /a 2 គឺជាអនុគមន៍អាណាលីទីក (analytic function អនុគមន៍ទាល់) ។
វិធីសាស្រ្តស៊េរីស្វ័យគុណទទួលបានទំរង់នៃចំលើយនៃស៊េរីស្វ័យគុណ
f
=
∑
k
=
0
∞
A
k
z
k
{\displaystyle f=\sum _{k=0}^{\infty }A_{k}z^{k}}
បើ a 2 ស្មើសូន្យ ចំពោះ z ខ្លះ នោះវិធីសាស្រ្តហ្រ្វូបេនៀស ដែលជាវិធីសាស្រ្តផ្នែកមួយនៃវិធីសាស្រ្តនេះ គឺត្រូវនឹងចំនុចទោល ។
ឧទាហរណ៍
យើងក្រលេកមើល សមីការឌីផេរ៉ង់ស្យែលអឺមីត (Hermite differential equation)
f
″
−
2
z
f
′
+
λ
f
=
0
;
λ
=
1
{\displaystyle f''-2zf'+\lambda f=0;\;\lambda =1}
យើងអាចបង្កើតចំលើយរបស់ស៊េរី
f
=
∑
k
=
0
∞
A
k
z
k
{\displaystyle f=\sum _{k=0}^{\infty }A_{k}z^{k}}
f
′
=
∑
k
=
0
∞
k
A
k
z
k
−
1
{\displaystyle f'=\sum _{k=0}^{\infty }kA_{k}z^{k-1}}
f
″
=
∑
k
=
0
∞
k
(
k
−
1
)
A
k
z
k
−
2
{\displaystyle f''=\sum _{k=0}^{\infty }k(k-1)A_{k}z^{k-2}}
ជំនួសវាចូលទៅក្នុងសមីការឌីផេរ៉ង់ស្យែល
∑
k
=
0
∞
k
(
k
−
1
)
A
k
z
k
−
2
−
2
z
∑
k
=
0
∞
k
A
k
z
k
−
1
+
∑
k
=
0
∞
A
k
z
k
=
0
{\displaystyle \sum _{k=0}^{\infty }k(k-1)A_{k}z^{k-2}-2z\sum _{k=0}^{\infty }kA_{k}z^{k-1}+\sum _{k=0}^{\infty }A_{k}z^{k}=0}
=
∑
k
=
0
∞
k
(
k
−
1
)
A
k
z
k
−
2
−
∑
k
=
0
∞
2
k
A
k
z
k
+
∑
k
=
0
∞
A
k
z
k
{\displaystyle =\sum _{k=0}^{\infty }k(k-1)A_{k}z^{k-2}-\sum _{k=0}^{\infty }2kA_{k}z^{k}+\sum _{k=0}^{\infty }A_{k}z^{k}}
សំរួលការបូកចំពោះតួដំបូង
=
∑
k
+
2
=
0
∞
(
k
+
2
)
(
(
k
+
2
)
−
1
)
A
k
+
2
z
(
k
+
2
)
−
2
−
∑
k
=
0
∞
2
k
A
k
z
k
+
∑
k
=
0
∞
A
k
z
k
{\displaystyle =\sum _{k+2=0}^{\infty }(k+2)((k+2)-1)A_{k+2}z^{(k+2)-2}-\sum _{k=0}^{\infty }2kA_{k}z^{k}+\sum _{k=0}^{\infty }A_{k}z^{k}}
=
∑
k
=
−
2
∞
(
k
+
2
)
(
k
+
1
)
A
k
+
2
z
k
−
∑
k
=
0
∞
2
k
A
k
z
k
+
∑
k
=
0
∞
A
k
z
k
{\displaystyle =\sum _{k=-2}^{\infty }(k+2)(k+1)A_{k+2}z^{k}-\sum _{k=0}^{\infty }2kA_{k}z^{k}+\sum _{k=0}^{\infty }A_{k}z^{k}}
=
(
0
)
(
−
1
)
A
0
z
−
2
+
(
−
1
)
(
0
)
A
1
z
−
1
+
∑
k
=
0
∞
(
k
+
2
)
(
k
+
1
)
A
k
+
2
z
k
−
∑
k
=
0
∞
2
k
A
k
z
k
+
∑
k
=
0
∞
A
k
z
k
{\displaystyle =(0)(-1)A_{0}z^{-2}+(-1)(0)A_{1}z^{-1}+\sum _{k=0}^{\infty }(k+2)(k+1)A_{k+2}z^{k}-\sum _{k=0}^{\infty }2kA_{k}z^{k}+\sum _{k=0}^{\infty }A_{k}z^{k}}
=
∑
k
=
0
∞
(
k
+
2
)
(
k
+
1
)
A
k
+
2
z
k
−
∑
k
=
0
∞
2
k
A
k
z
k
+
∑
k
=
0
∞
A
k
z
k
{\displaystyle =\sum _{k=0}^{\infty }(k+2)(k+1)A_{k+2}z^{k}-\sum _{k=0}^{\infty }2kA_{k}z^{k}+\sum _{k=0}^{\infty }A_{k}z^{k}}
=
∑
k
=
0
∞
(
(
k
+
2
)
(
k
+
1
)
A
k
+
2
+
(
−
2
k
+
1
)
A
k
)
z
k
{\displaystyle =\sum _{k=0}^{\infty }\left((k+2)(k+1)A_{k+2}+(-2k+1)A_{k}\right)z^{k}}
ឥឡូវ បើស៊េរីនេះជាចំលើយ មេគុណទាំងអស់ត្រូវតែស្មើសូន្យ ដូចនេះ
(
k
+
2
)
(
k
+
1
)
A
k
+
2
+
(
−
2
k
+
1
)
A
k
=
0
{\displaystyle (k+2)(k+1)A_{k+2}+(-2k+1)A_{k}=0\;\!}
យើងអាចរៀបវាឡើងវិញ ដើម្បីទទួលបានទំនាក់ទំនងចំពោះ A k +2 ។
(
k
+
2
)
(
k
+
1
)
A
k
+
2
=
−
(
−
2
k
+
1
)
A
k
{\displaystyle (k+2)(k+1)A_{k+2}=-(-2k+1)A_{k}\;\!}
A
k
+
2
=
(
2
k
−
1
)
(
k
+
2
)
(
k
+
1
)
A
k
{\displaystyle A_{k+2}={(2k-1) \over (k+2)(k+1)}A_{k}\;\!}
ឥឡូវយើងបាន
A
2
=
−
1
(
2
)
(
1
)
A
0
=
−
1
2
A
0
,
A
3
=
1
(
3
)
(
2
)
A
1
=
1
6
A
1
{\displaystyle A_{2}={-1 \over (2)(1)}A_{0}={-1 \over 2}A_{0},\,A_{3}={1 \over (3)(2)}A_{1}={1 \over 6}A_{1}}
យើងអាចកំនត់ A 0 និង A 1 បើវាមានលក្ខខណ្ឌដើម ឧទាហរណ៍ បើយើងមានសំនួរដែលមានតំលៃដើម ។
ដូចនេះ យើងបាន
A
4
=
1
4
A
2
=
(
1
4
)
(
−
1
2
)
A
0
=
−
1
8
A
0
{\displaystyle A_{4}={1 \over 4}A_{2}=\left({1 \over 4}\right)\left({-1 \over 2}\right)A_{0}={-1 \over 8}A_{0}}
A
5
=
1
4
A
3
=
(
1
4
)
(
1
6
)
A
1
=
1
24
A
1
{\displaystyle A_{5}={1 \over 4}A_{3}=\left({1 \over 4}\right)\left({1 \over 6}\right)A_{1}={1 \over 24}A_{1}}
A
6
=
7
30
A
4
=
(
7
30
)
(
−
1
8
)
A
0
=
−
7
240
A
0
{\displaystyle A_{6}={7 \over 30}A_{4}=\left({7 \over 30}\right)\left({-1 \over 8}\right)A_{0}={-7 \over 240}A_{0}}
A
7
=
3
14
A
5
=
(
3
14
)
(
1
24
)
A
1
=
1
112
A
1
{\displaystyle A_{7}={3 \over 14}A_{5}=\left({3 \over 14}\right)\left({1 \over 24}\right)A_{1}={1 \over 112}A_{1}}
ហើយចំលើយរបស់ស៊េរីគឺ
f
=
A
0
x
0
+
A
1
x
1
+
A
2
x
2
+
A
3
x
3
+
A
4
x
4
+
A
5
x
5
+
A
6
x
6
+
A
7
x
7
+
⋯
{\displaystyle f=A_{0}x^{0}+A_{1}x^{1}+A_{2}x^{2}+A_{3}x^{3}+A_{4}x^{4}+A_{5}x^{5}+A_{6}x^{6}+A_{7}x^{7}+\cdots }
=
A
0
x
0
+
A
1
x
1
+
−
1
2
A
0
x
2
+
1
6
A
1
x
3
+
−
1
8
A
0
x
4
+
1
24
A
1
x
5
+
−
7
240
A
0
x
6
+
1
112
A
1
x
7
+
⋯
{\displaystyle =A_{0}x^{0}+A_{1}x^{1}+{-1 \over 2}A_{0}x^{2}+{1 \over 6}A_{1}x^{3}+{-1 \over 8}A_{0}x^{4}+{1 \over 24}A_{1}x^{5}+{-7 \over 240}A_{0}x^{6}+{1 \over 112}A_{1}x^{7}+\cdots }
=
A
0
x
0
+
−
1
2
A
0
x
2
+
−
1
8
A
0
x
4
+
−
7
240
A
0
x
6
+
A
1
x
+
1
6
A
1
x
3
+
1
24
A
1
x
5
+
1
112
A
1
x
7
+
⋯
{\displaystyle =A_{0}x^{0}+{-1 \over 2}A_{0}x^{2}+{-1 \over 8}A_{0}x^{4}+{-7 \over 240}A_{0}x^{6}+A_{1}x+{1 \over 6}A_{1}x^{3}+{1 \over 24}A_{1}x^{5}+{1 \over 112}A_{1}x^{7}+\cdots }
ដែលយើងអាចបំបែកវាទៅជាផលបូកនៃចំលើយរបស់ស៊េរីឯករាជ្យលីនេអែពីរ
f
=
A
0
(
1
+
−
1
2
x
2
+
−
1
8
x
4
+
−
7
240
x
6
+
⋯
)
+
A
1
(
x
+
1
6
x
3
+
1
24
x
5
+
1
112
x
7
+
⋯
)
{\displaystyle f=A_{0}(1+{-1 \over 2}x^{2}+{-1 \over 8}x^{4}+{-7 \over 240}x^{6}+\cdots )+A_{1}(x+{1 \over 6}x^{3}+{1 \over 24}x^{5}+{1 \over 112}x^{7}+\cdots )}
ដែលអាចសំរួលដោយការប្រើនៃស៊េរីស្វ័គុណដែលមានប្រភាគនៃមេគុណបន្តលំដាប់(hypergeometric series) ។