Jump to content

ទ្រឹស្តីបទប្រាម៉ាហ្គឹបតា

ពីវិគីភីឌា
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
និង

ក្នុងធរណីមាត្រ ទ្រឹស្តីបទប្រាម៉ាហ្គឹបតា (Brahmagupta theorem) ផ្តល់នូវលក្ខខណ្ឌចាំបាច់​ក្នុងករណីអង្កត់ទ្រូង​ទាំងពីរនៃ​ចតុកោណចារឹកក្នុងរង្វង់កែងគ្នា។

ទ្រឹស្តីបទ

ប្រសិនបើអង្កត់ទ្រូងទាំងពីរនៃចតុកោណចារឹកក្នុងរង្វង់កែងគ្នា គេបានគ្រប់អង្កត់កែងទៅនឹងជ្រុងមួយនៃចតុកោណគូសកាត់ចំនុចប្រសព្វ​នៃអង្កត់ទ្រូង​ទៅកាន់ជ្រុងឈមរបស់វា តែងតែចែក​ជ្រុងឈមនោះ​ជាពីរអង្កត់មានរង្វាស់ស្មើគ្នាជានិច្ច។

ទ្រឹស្តីបទនេះត្រូវដាក់ឈ្មោះថាទ្រឹស្តីបទប្រាម៉ាហ្គឹបតា ដោយផ្តល់កិត្តិយសដល់គណិតវិទូជនជាតិឥណ្ឌាឈ្មោះ ប្រាម៉ាហ្គឹបតា (Brahmagupta) ។


ការពិពណ៌នាបន្ថែម៖ តាង A B C និង D ជាបួនចំនុចនៅលើរង្វង់ ដែលបន្ទាត់ (AC) និង (BD) កែងគ្នា។ តាង M ជាចំនុចប្រសព្វរវាង AC និង BD ។ គូសទំលាក់ចំនោលកែងពី M មកលើបន្ទាត់ (BC) តាងដោយ E ។ តាង F ជាចំនុចប្រសព្វជាចំនុចប្រសព្វនៃបន្ទាត់ (EM) និង (AD) ។ នោះគេបានទ្រឹស្តីបទពោលថា F ជាចំនុចកណ្តាលនៃ AD

សំរាយបញ្ជាក់

បំណកស្រាយទ្រឹស្តីបទ

យើងចាំបាច់ត្រូវបង្ហាញថា ។ យើងនឹងបង្ហាញថា AF និង FD ពិតជាស្មើនឹង FM ។

ដើម្បីបង្ហាញថា ដំបូងយើងកត់សំគាល់ឃើញថា

(ព្រោះវាជាមុំចារឹកក្នុងដែលស្កាត់ដោយធ្នូដូចគ្នានៃរង្វង់)

ម្យ៉ាងទៀត និង ជាមុំបន្ថែមនៃមុំ (មុំដែលមានផលបូកធំជាង )

គេបានមុំ

ហេតុនេះត្រីកោណ AFM គឺជាត្រីកោណសមបាត ។ ដូចនេះ

ដូចគ្នាដែរចំពោះសំរាយបញ្ជាក់ថា

គេបានត្រីកោណ DFM ជាត្រីកោណសមបាត ដែល

តាម និង គេបាន

ដូចនេះសំរាយបញ្ជាក់ត្រូវនឹងពំនោលនៃទ្រឹស្តីបទ។

សូមមើលផងដែរ