Vai al contenuto

Counting sort

Da Wikipedia, l'enciclopedia libera.
Counting sort
ClasseAlgoritmo di ordinamento
Struttura datiArray
Caso peggiore temporalmente
Caso ottimo temporalmente
Caso medio temporalmente

Il Counting sort è un algoritmo di ordinamento per valori numerici interi con complessità lineare. L'algoritmo si basa sulla conoscenza a priori dell'intervallo in cui sono compresi i valori da ordinare.

Descrizione intuitiva

L'algoritmo conta il numero di occorrenze di ciascun valore presente nell'array da ordinare, memorizzando questa informazione in un array temporaneo di dimensione pari all'intervallo di valori. Il numero di ripetizioni dei valori inferiori indica la posizione del valore immediatamente successivo.

Si calcolano i valori massimo, , e minimo, , dell'array e si prepara un array ausiliario di dimensione pari all'intervallo dei valori con che rappresenta la frequenza dell'elemento nell'array di partenza . Si visita l'array aumentando l'elemento di corrispondente. Dopo si visita l'array in ordine e si scrivono su , copie del valore .

Complessità

L'algoritmo esegue tre iterazioni, due di lunghezza (pari alla lunghezza dell'array da ordinare) per l'individuazione di e e per il calcolo delle occorrenze dei valori, e una di lunghezza (pari a ) per l'impostazione delle posizioni finali dei valori: la complessità totale è quindi .

Non è basato su confronti e scambi e conviene utilizzarlo quando il valore di è , nel qual caso l'algoritmo è , altrimenti risulterebbero più veloci altri algoritmi.

Pseudocodice

countingSort(A[])
   //Calcolo degli elementi max e min
   max ← A[0]
   min ← A[0]
   for i ← 1 to length[A] do
      if (A[i] > max) then
         max ← A[i]
      else if(A[i] < min) then
         min ← A[i]
   end for
  //Costruzione dell'array C
   * crea un array C di dimensione max - min + 1
   for i ← 0 to length[C] do
      C[i] ← 0                                 //inizializza a zero gli elementi di C
   end for
   for i ← 0 to length[A] do
      C[A[i] - min] = C[A[i] - min] + 1            //aumenta il numero di volte che si è incontrato il valore
   end for
   //Ordinamento in base al contenuto dell'array delle frequenze C
   k ← 0                                       //indice per l'array A
   for i ← 0 to length[C] do
      while C[i] > 0 do                        //scrive C[i] volte il valore (i + min) nell'array A
         A[k] ← i + min
         k ← k + 1
         C[i] ← C[i] - 1
   end for

Bibliografia

  • Thomas Cormen, Charles E. Leiserson, Ronald Rivest, Sorting in Linear Time, in Introduction to Algorithms, 2ª ed., Cambridge, Massachusetts, The MIT Press, 1998, pp. 175-177.
  • Thomas Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein, Ordinamento in tempo lineare, in Introduzione agli algoritmi e strutture dati, 3ª ed., Cambridge, Massachusetts, McGraw-Hill Education, 2010, pp. 159-161.

Altri progetti

  Portale Informatica: accedi alle voci di Wikipedia che trattano di informatica