From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematical analysis , the Young's inequality for integral operators , is a bound on the
L
p
→
L
q
{\displaystyle L^{p}\to L^{q}}
operator norm of an integral operator in terms of
L
r
{\displaystyle L^{r}}
norms of the kernel itself.
Statement
Assume that
X
{\displaystyle X}
and
Y
{\displaystyle Y}
are measurable spaces,
K
:
X
×
Y
→
R
{\displaystyle K:X\times Y\to \mathbb {R} }
is measurable and
q
,
p
,
r
≥
1
{\displaystyle q,p,r\geq 1}
are such that
1
q
=
1
p
+
1
r
−
1
{\displaystyle {\frac {1}{q}}={\frac {1}{p}}+{\frac {1}{r}}-1}
. If
∫
Y
|
K
(
x
,
y
)
|
r
d
y
≤
C
r
{\displaystyle \int _{Y}|K(x,y)|^{r}\,\mathrm {d} y\leq C^{r}}
for all
x
∈
X
{\displaystyle x\in X}
and
∫
X
|
K
(
x
,
y
)
|
r
d
x
≤
C
r
{\displaystyle \int _{X}|K(x,y)|^{r}\,\mathrm {d} x\leq C^{r}}
for all
y
∈
Y
{\displaystyle y\in Y}
then [ 1]
∫
X
|
∫
Y
K
(
x
,
y
)
f
(
y
)
d
y
|
q
d
x
≤
C
q
(
∫
Y
|
f
(
y
)
|
p
d
y
)
q
p
.
{\displaystyle \int _{X}\left|\int _{Y}K(x,y)f(y)\,\mathrm {d} y\right|^{q}\,\mathrm {d} x\leq C^{q}\left(\int _{Y}|f(y)|^{p}\,\mathrm {d} y\right)^{\frac {q}{p}}.}
Particular cases
Convolution kernel
If
X
=
Y
=
R
d
{\displaystyle X=Y=\mathbb {R} ^{d}}
and
K
(
x
,
y
)
=
h
(
x
−
y
)
{\displaystyle K(x,y)=h(x-y)}
, then the inequality becomes Young's convolution inequality .
See also
Young's inequality for products
Notes