Jump to content

Y and H transforms

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the Y transforms and H transforms are complementary pairs of integral transforms involving, respectively, the Neumann function (Bessel function of the second kind) Yν of order ν and the Struve function Hν of the same order.

For a given function f(r), the Y-transform of order ν is given by

The inverse of above is the H-transform of the same order; for a given function F(k), the H-transform of order ν is given by

These transforms are closely related to the Hankel transform, as both involve Bessel functions. In problems of mathematical physics and applied mathematics, the Hankel, Y, H transforms all may appear in problems having axial symmetry. Hankel transforms are however much more commonly seen due to their connection with the 2-dimensional Fourier transform. The Y, H transforms appear in situations with singular behaviour on the axis of symmetry (Rooney).

References

  • Bateman Manuscript Project: Tables of Integral Transforms Vol. II. Contains extensive tables of transforms: Chapter IX (Y-transforms) and Chapter XI (H-transforms).
  • Rooney, P. G. (1980). "On the Yν and Hν transformations". Canadian Journal of Mathematics. 32 (5): 1021. doi:10.4153/CJM-1980-079-4.