From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Mathematical function
The Wright omega function along part of the real axis
In mathematics , the Wright omega function or Wright function ,[ note 1] denoted ω , is defined in terms of the Lambert W function as:
ω
(
z
)
=
W
⌈
I
m
(
z
)
−
π
2
π
⌉
(
e
z
)
.
{\displaystyle \omega (z)=W_{{\big \lceil }{\frac {\mathrm {Im} (z)-\pi }{2\pi }}{\big \rceil }}(e^{z}).}
It is simpler to be defined by its inverse function
z
(
ω
)
=
ln
(
ω
)
+
ω
{\displaystyle z(\omega )=\ln(\omega )+\omega }
Uses
One of the main applications of this function is in the resolution of the equation z = ln(z ), as the only solution is given by z = e −ω(π i ) .
y = ω(z ) is the unique solution, when
z
≠
x
±
i
π
{\displaystyle z\neq x\pm i\pi }
for x ≤ −1, of the equation y + ln(y ) = z . Except for those two values, the Wright omega function is continuous , even analytic .
Properties
The Wright omega function satisfies the relation
W
k
(
z
)
=
ω
(
ln
(
z
)
+
2
π
i
k
)
{\displaystyle W_{k}(z)=\omega (\ln(z)+2\pi ik)}
.
It also satisfies the differential equation
d
ω
d
z
=
ω
1
+
ω
{\displaystyle {\frac {d\omega }{dz}}={\frac {\omega }{1+\omega }}}
wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation
ln
(
ω
)
+
ω
=
z
{\displaystyle \ln(\omega )+\omega =z}
, and as a consequence its integral can be expressed as:
∫
ω
n
d
z
=
{
ω
n
+
1
−
1
n
+
1
+
ω
n
n
if
n
≠
−
1
,
ln
(
ω
)
−
1
ω
if
n
=
−
1.
{\displaystyle \int \omega ^{n}\,dz={\begin{cases}{\frac {\omega ^{n+1}-1}{n+1}}+{\frac {\omega ^{n}}{n}}&{\mbox{if }}n\neq -1,\\\ln(\omega )-{\frac {1}{\omega }}&{\mbox{if }}n=-1.\end{cases}}}
Its Taylor series around the point
a
=
ω
a
+
ln
(
ω
a
)
{\displaystyle a=\omega _{a}+\ln(\omega _{a})}
takes the form :
ω
(
z
)
=
∑
n
=
0
+
∞
q
n
(
ω
a
)
(
1
+
ω
a
)
2
n
−
1
(
z
−
a
)
n
n
!
{\displaystyle \omega (z)=\sum _{n=0}^{+\infty }{\frac {q_{n}(\omega _{a})}{(1+\omega _{a})^{2n-1}}}{\frac {(z-a)^{n}}{n!}}}
where
q
n
(
w
)
=
∑
k
=
0
n
−
1
⟨
⟨
n
+
1
k
⟩
⟩
(
−
1
)
k
w
k
+
1
{\displaystyle q_{n}(w)=\sum _{k=0}^{n-1}{\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n+1\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }(-1)^{k}w^{k+1}}
in which
⟨
⟨
n
k
⟩
⟩
{\displaystyle {\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }}
is a second-order Eulerian number .
Values
ω
(
0
)
=
W
0
(
1
)
≈
0.56714
ω
(
1
)
=
1
ω
(
−
1
±
i
π
)
=
−
1
ω
(
−
1
3
+
ln
(
1
3
)
+
i
π
)
=
−
1
3
ω
(
−
1
3
+
ln
(
1
3
)
−
i
π
)
=
W
−
1
(
−
1
3
e
−
1
3
)
≈
−
2.237147028
{\displaystyle {\begin{array}{lll}\omega (0)&=W_{0}(1)&\approx 0.56714\\\omega (1)&=1&\\\omega (-1\pm i\pi )&=-1&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)+i\pi )&=-{\frac {1}{3}}&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)-i\pi )&=W_{-1}\left(-{\frac {1}{3}}e^{-{\frac {1}{3}}}\right)&\approx -2.237147028\\\end{array}}}
Plots
Plots of the Wright omega function on the complex plane
z
=
ℜ
{
ω
(
x
+
i
y
)
}
{\displaystyle z=\Re \{\omega (x+iy)\}}
z
=
ℑ
{
ω
(
x
+
i
y
)
}
{\displaystyle z=\Im \{\omega (x+iy)\}}
z
=
|
ω
(
x
+
i
y
)
|
{\displaystyle z=|\omega (x+iy)|}
Notes
References