Jump to content

Vectorial addition chain

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, for positive integers k and s, a vectorial addition chain is a sequence V of k-dimensional vectors of nonnegative integers vi for −k + 1 ≤ is together with a sequence w, such that

vk+1 = [1,0,0,...0,0]
vk+2 = [0,1,0,...0,0]
v0 = [0,0,0,,...0,1]
vi =vj+vr for all 1≤is with -k+1≤j, ri-1
vs = [n0,...,nk-1]
w = (w1,...ws), wi=(j,r).

For example, a vectorial addition chain for [22,18,3] is

V=([1,0,0],[0,1,0],[0,0,1],[1,1,0],[2,2,0],[4,4,0],[5,4,0],[10,8,0],[11,9,0],[11,9,1],[22,18,2],[22,18,3])
w=((-2,-1),(1,1),(2,2),(-2,3),(4,4),(1,5),(0,6),(7,7),(0,8))

Vectorial addition chains are well suited to perform multi-exponentiation:[1]

Input: Elements x0,...,xk-1 of an abelian group G and a vectorial addition chain of dimension k computing [n0,...,nk-1]
Output:The element x0n0...xk-1nr-1
  1. for i =-k+1 to 0 do yixi+k-1
  2. for i = 1 to s do yiyj×yr
  3. return ys

Addition sequence

An addition sequence for the set of integer S ={n0, ..., nr-1} is an addition chain v that contains every element of S.

For example, an addition sequence computing

{47,117,343,499}

is

(1,2,4,8,10,11,18,36,47,55,91,109,117,226,343,434,489,499).

It's possible to find addition sequence from vectorial addition chains and vice versa, so they are in a sense dual.[2]

See also

References

  1. ^ de Rooij, Peter (1994). "Efficient exponentiation using procomputation and vector addition chains". In Santis, Alfredo De (ed.). Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9–12, 1994, Proceedings. Lecture Notes in Computer Science. Vol. 950. Springer. pp. 389–399. doi:10.1007/BFB0053453. ISBN 978-3-540-60176-0.
  2. ^ Cohen, H., Frey, G. (editors): Handbook of elliptic and hyperelliptic curve cryptography. Discrete Math. Appl., Chapman & Hall/CRC (2006)