From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Using Conways Chained Arrow Notation
F
0
(
n
)
≡
1
{\displaystyle F_{0}(n)\equiv 1}
F
1
(
n
)
≡
n
{\displaystyle F_{1}(n)\equiv n}
F
2
(
n
)
≡
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{\displaystyle F_{2}(n)\equiv {\begin{matrix}\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\\ \ n{\mbox{ copies of }}n\end{matrix}}}
F
3
(
n
)
≡
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
}
n
layers
{\displaystyle F_{3}(n)\equiv \left.{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right\}n{\mbox{ layers}}}
F
4
(
n
)
≡
(
n
layers
)
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
⋯
⋯
⋯
⋯
⋯
⋯
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
⏟
n
towers
{\displaystyle F_{4}(n)\equiv \ \ \ \underbrace {(n{\mbox{ layers}})\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} _{\begin{matrix}n{\mbox{ towers}}\end{matrix}}}
F
5
(
n
)
≡
n
layers
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
⏟
⋮
⋮
⋮
⏟
n
layers
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
⏟
n
layers
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
{
⋯
⋯
⋯
⋯
{
n
→
n
→
⋯
⋯
⋯
⋯
⋯
→
n
⏟
n
→
n
→
⋯
⋯
⋯
⋯
→
n
⏟
⋮
⋮
⋮
⏟
n
→
n
→
⋯
⋯
→
n
⏟
n
→
n
→
⋯
→
n
⏟
n
copies of
n
⏟
n
towers
}
n
Super-Layers
{\displaystyle F_{5}(n)\equiv \ \ \left.{\begin{matrix}&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&\underbrace {\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}} \\&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&{\begin{matrix}n{\mbox{ towers}}\end{matrix}}\end{matrix}}\right\}n{\mbox{ Super-Layers}}}
G
(
n
)
≡
F
n
(
n
)
{\displaystyle G(n)\equiv F_{n}(n)}