Jump to content

User:Jmkim dot com/TeX Samples

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
TeX Samples
TeX 샘플

nowiki Test

<math>E=mc^2</math>

<nowiki><math>E=mc^2</math></nowiki>

<math>E=mc^2</math>

Inequality Sign Test

<math>1<2</math>

<math>2>1</math>

<math>1\lt 2</math>

Failed to parse (unknown function "\lt"): {\displaystyle 1\lt 2}

<math>2\gt 1</math>

Failed to parse (unknown function "\gt"): {\displaystyle 2\gt 1}

<math>2\geq 1</math>

Inequality Sign Test 2

<math>a<b</math>

<math>a < b</math>

<math>a>b</math>

<math>a > b</math>

UTF-8 Test

<math>전압 = 전류 \times 저항</math>

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle 전압 = 전류 \times 저항}

<math>\mbox{전압} = \mbox{전류} \times \mbox{저항}</math>

<math>저항 = \frac{전압}{전류}</math>

Failed to parse (syntax error): {\displaystyle 저항 = \frac{전압}{전류}}

<math>\mbox{저항} = \frac{\mbox{전압}}{\mbox{전류}}</math>

<math>n</math>개의 동전을 던져 앞면 <math>k</math>가 나올 확률 <math>P(E)</math>는?

개의 동전을 던져 앞면 가 나올 확률 는?

<math>償還までの合計利回り =\left(1+\frac{期間利率}{100}\right)^{期間}</math>

Failed to parse (syntax error): {\displaystyle 償還までの合計利回り =\left(1+\frac{期間利率}{100}\right)^{期間}}

<math>\mbox{償還までの合計利回り} =\left(1+\frac{\mbox{期間利率}}{100}\right)^{\mbox{期間}}</math>

The Lorenz Equations

<math>\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}</math>

The Cauchy-Schwarz Inequality

<math>\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>

A Cross Product Formula

<math>\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}</math>

The probability of getting k heads when flipping n coins is

<math>P(E)   = {n \choose k} p^k (1-p)^{ n-k}</math>

An Identity of Ramanujan

<math>\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }</math>

A Rogers-Ramanujan Identity

<math>1 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots
= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad for\,|q|<1.</math>

Maxwell’s Equations

<math>\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}</math>

같이 보기

참고 자료