From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Graphical interpretation of the parallelism operator with
a
‖
b
=
c
{\displaystyle {a\|b=c}}
The parallelism operator
‖
{\displaystyle {\|}}
(Read "parallel ") is a mathematical function that is used primarily as a shorthand notation in electrical engineering . It computes the reciprocal of a sum of reciprocal values, and is defined as
‖
:
C
¯
×
C
¯
→
C
¯
(
a
,
b
)
↦
a
‖
b
=
1
1
a
+
1
b
{\displaystyle {\begin{matrix}\|:\ &{\overline {\mathbb {C} }}\times {\overline {\mathbb {C} }}&\to &{\overline {\mathbb {C} }}\\&(a,b)&\mapsto &a\|b={\frac {1}{{\frac {1}{a}}+{\frac {1}{b}}}}\end{matrix}}}
where
C
¯
=
C
∪
{
∞
}
{\displaystyle {\overline {\mathbb {C} }}=\mathbb {C} \cup \{\infty \}}
is the set of extended complex numbers (with its usual rules of operation).
Properties
a
‖
a
=
a
2
{\displaystyle a\|a={\frac {a}{2}}}
.
a
≠
b
⟺
|
a
‖
b
|
>
1
2
min
(
|
a
|
,
|
b
|
)
{\displaystyle a\neq b\iff \left|a\|b\right|>{\tfrac {1}{2}}\min(|a|,|b|)}
, where
|
a
‖
b
|
{\displaystyle \left|a\|b\right|}
denotes the absolute value of
a
‖
b
{\displaystyle a\|b}
.
When
a
{\displaystyle a}
and
b
{\displaystyle b}
are positive real numbers ,
|
a
‖
b
|
<
min
(
a
,
b
)
{\displaystyle \left|a\|b\right|<\min(a,b)}
.
The parallelism operator is commutative :
a
‖
b
=
b
‖
a
{\displaystyle a\|b=b\|a}
.
The parallelism operator is associative :
(
a
‖
b
)
‖
c
=
a
‖
(
b
‖
c
)
=
a
‖
b
‖
c
{\displaystyle \left(a\|b\right)\|c=a\|\left(b\|c\right)=a\|b\|c}
.
The parallelism operator has
∞
{\displaystyle \infty }
as its identity operator , and, for
a
∈
C
¯
{\displaystyle a\in {\overline {\mathbb {C} }}}
,
−
a
{\displaystyle -a}
is the inverse element . Thus,
(
C
¯
,
‖
)
{\displaystyle ({\overline {\mathbb {C} }},\|)}
is an Abelian group .
Examples
Example 1
Problem :
A bricklayer can build a brick wall in 5 hours. A second bricklayer can build the same wall in 7 hours. How long does it take if both bricklayers work on the wall simultaneously?
Solution :
t
1
‖
t
2
=
5
h
‖
7
h
=
1
1
5
h
+
1
7
h
≈
2.917
h
{\displaystyle t_{1}\|t_{2}=5\,\mathrm {h} \|7\,\mathrm {h} ={\frac {1}{{\frac {1}{5\,\mathrm {h} }}+{\frac {1}{7\,\mathrm {h} }}}}\approx 2.917\,\mathrm {h} }
Thus, it takes just under 3 hours.
Example 2
Problem :
Three resistors of resistances
R
1
=
270
k
Ω
{\displaystyle {R_{1}=270\,\mathrm {k\Omega } }}
,
R
2
=
180
k
Ω
{\displaystyle {R_{2}=180\,\mathrm {k\Omega } }}
, and
R
3
=
120
k
Ω
{\displaystyle {R_{3}=120\,\mathrm {k\Omega } }}
are connected in parallel . What is the total resistance of the circuit ?
Solution :
R
1
‖
R
2
‖
R
3
=
270
k
Ω
‖
180
k
Ω
‖
120
k
Ω
=
1
1
270
k
Ω
+
1
180
k
Ω
+
1
120
k
Ω
≈
56.842
k
Ω
{\displaystyle R_{1}\|R_{2}\|R_{3}=270\,\mathrm {k\Omega } \|180\,\mathrm {k\Omega } \|120\,\mathrm {k\Omega } ={\frac {1}{{\frac {1}{270\,\mathrm {k\Omega } }}+{\frac {1}{180\,\mathrm {k\Omega } }}+{\frac {1}{120\,\mathrm {k\Omega } }}}}\approx 56.842\,\mathrm {k\Omega } }
Thus, the circuit has a total resistance of about 57 kΩ .