Jump to content

Universal embedding theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The universal embedding theorem, or Krasner–Kaloujnine universal embedding theorem, is a theorem from the mathematical discipline of group theory first published in 1951 by Marc Krasner and Lev Kaluznin.[1] The theorem states that any group extension of a group H by a group A is isomorphic to a subgroup of the regular wreath product A Wr H. The theorem is named for the fact that the group A Wr H is said to be universal with respect to all extensions of H by A.

Statement

Let H and A be groups, let K = AH be the set of all functions from H to A, and consider the action of H on itself by multiplication. This action extends naturally to an action of H on K, defined as where and g and h are both in H. This is an automorphism of K, so we can construct the semidirect product K ⋊ H, which is termed the regular wreath product, and denoted A Wr H or The group K = AH (which is isomorphic to ) is called the base group of the wreath product.

The Krasner–Kaloujnine universal embedding theorem states that if G has a normal subgroup A and H = G/A, then there is an injective homomorphism of groups such that A maps surjectively onto [2] This is equivalent to the wreath product A Wr H having a subgroup isomorphic to G, where G is any extension of H by A.

Proof

This proof comes from Dixon–Mortimer.[3]

Define a homomorphism whose kernel is A. Choose a set of (right) coset representatives of A in G, where Then for all x in G, For each x in G, we define a function such that Then the embedding is given by

We now prove that this is a homomorphism. If x and y are in G, then Now so for all u in H,

so fx fy = fxy. Hence is a homomorphism as required.

The homomorphism is injective. If then both fx(u) = fy(u) (for all u) and Then but we can cancel and from both sides, so x = y, hence is injective. Finally, precisely when in other words when (as ).

  • The Krohn–Rhodes theorem is a statement similar to the universal embedding theorem, but for semigroups. A semigroup S is a divisor of a semigroup T if it is the image of a subsemigroup of T under a homomorphism. The theorem states that every finite semigroup S is a divisor of a finite alternating wreath product of finite simple groups (each of which is a divisor of S) and finite aperiodic semigroups.
  • An alternate version of the theorem exists which requires only a group G and a subgroup A (not necessarily normal).[4] In this case, G is isomorphic to a subgroup of the regular wreath product A Wr (G/Core(A)).

References

Bibliography

  • Dixon, John; Mortimer, Brian (1996). Permutation Groups. Springer. ISBN 978-0387945996.
  • Kaloujnine, Lev; Krasner, Marc (1951a). "Produit complet des groupes de permutations et le problème d'extension de groupes II". Acta Sci. Math. Szeged. 14: 39–66.
  • Kaloujnine, Lev; Krasner, Marc (1951b). "Produit complet des groupes de permutations et le problème d'extension de groupes III". Acta Sci. Math. Szeged. 14: 69–82.
  • Praeger, Cheryl; Schneider, Csaba (2018). Permutation groups and Cartesian Decompositions. Cambridge University Press. ISBN 978-0521675062.