Jump to content

UP (complexity)

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In complexity theory, UP (unambiguous non-deterministic polynomial-time) is the complexity class of decision problems solvable in polynomial time on an unambiguous Turing machine with at most one accepting path for each input. UP contains P and is contained in NP.

A common reformulation of NP states that a language is in NP if and only if a given answer can be verified by a deterministic machine in polynomial time. Similarly, a language is in UP if a given answer can be verified in polynomial time, and the verifier machine only accepts at most one answer for each problem instance. More formally, a language L belongs to UP if there exists a two-input polynomial-time algorithm A and a constant c such that

if x in L , then there exists a unique certificate y with such that
if x is not in L, there is no certificate y with such that
algorithm A verifies L in polynomial time.

UP (and its complement co-UP) contain both the integer factorization problem and parity game problem. Because determined effort has yet to find a polynomial-time solution to any of these problems, it is suspected to be difficult to show P=UP, or even P=(UPco-UP).

The Valiant–Vazirani theorem states that NP is contained in RPPromise-UP, which means that there is a randomized reduction from any problem in NP to a problem in Promise-UP.

UP is not known to have any complete problems.[1]

References

Citations

  1. ^ "U". Complexity Zoo. UP: Unambiguous Polynomial-Time.

Sources