From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics, the truncated power function [ 1] with exponent
n
{\displaystyle n}
is defined as
x
+
n
=
{
x
n
:
x
>
0
0
:
x
≤
0.
{\displaystyle x_{+}^{n}={\begin{cases}x^{n}&:\ x>0\\0&:\ x\leq 0.\end{cases}}}
In particular,
x
+
=
{
x
:
x
>
0
0
:
x
≤
0.
{\displaystyle x_{+}={\begin{cases}x&:\ x>0\\0&:\ x\leq 0.\end{cases}}}
and interpret the exponent as conventional power .
Relations
Truncated power functions can be used for construction of B-splines .
x
↦
x
+
0
{\displaystyle x\mapsto x_{+}^{0}}
is the Heaviside function .
χ
[
a
,
b
)
(
x
)
=
(
b
−
x
)
+
0
−
(
a
−
x
)
+
0
{\displaystyle \chi _{[a,b)}(x)=(b-x)_{+}^{0}-(a-x)_{+}^{0}}
where
χ
{\displaystyle \chi }
is the indicator function .
Truncated power functions are refinable .
See also
External links
References
^ Massopust, Peter (2010). Interpolation and Approximation with Splines and Fractals . Oxford University Press, USA. p. 46. ISBN 978-0-19-533654-2 .