Jump to content

Topological complexity

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, topological complexity of a topological space X (also denoted by TC(X)) is a topological invariant closely connected to the motion planning problem[further explanation needed], introduced by Michael Farber in 2003.

Definition

Let X be a topological space and be the space of all continuous paths in X. Define the projection by . The topological complexity is the minimal number k such that

  • there exists an open cover of ,
  • for each , there exists a local section

Examples

  • The topological complexity: TC(X) = 1 if and only if X is contractible.
  • The topological complexity of the sphere is 2 for n odd and 3 for n even. For example, in the case of the circle , we may define a path between two points to be the geodesic between the points, if it is unique. Any pair of antipodal points can be connected by a counter-clockwise path.
  • If is the configuration space of n distinct points in the Euclidean m-space, then

References

  1. ^ Cohen, Daniel C.; Vandembroucq, Lucile (2016). "Topological complexity of the Klein bottle". Journal of Applied and Computational Topology. 1 (2): 199–213. arXiv:1612.03133. doi:10.1007/s41468-017-0002-0.
  • Farber, M. (2003). "Topological complexity of motion planning". Discrete & Computational Geometry. Vol. 29, no. 2. pp. 211–221.
  • Armindo Costa: Topological Complexity of Configuration Spaces, Ph.D. Thesis, Durham University (2010), online