Jump to content

Time dependent vector field

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a time dependent vector field is a construction in vector calculus which generalizes the concept of vector fields. It can be thought of as a vector field which moves as time passes. For every instant of time, it associates a vector to every point in a Euclidean space or in a manifold.

Definition

A time dependent vector field on a manifold M is a map from an open subset on

such that for every , is an element of .

For every such that the set

is nonempty, is a vector field in the usual sense defined on the open set .

Associated differential equation

Given a time dependent vector field X on a manifold M, we can associate to it the following differential equation:

which is called nonautonomous by definition.

Integral curve

An integral curve of the equation above (also called an integral curve of X) is a map

such that , is an element of the domain of definition of X and

.

Equivalence with time-independent vector fields

A time dependent vector field on can be thought of as a vector field on where does not depend on

Conversely, associated with a time-dependent vector field on is a time-independent one

on In coordinates,

The system of autonomous differential equations for is equivalent to that of non-autonomous ones for and is a bijection between the sets of integral curves of and respectively.

Flow

The flow of a time dependent vector field X, is the unique differentiable map

such that for every ,

is the integral curve of X that satisfies .

Properties

We define as

  1. If and then
  2. , is a diffeomorphism with inverse .

Applications

Let X and Y be smooth time dependent vector fields and the flow of X. The following identity can be proved:

Also, we can define time dependent tensor fields in an analogous way, and prove this similar identity, assuming that is a smooth time dependent tensor field:

This last identity is useful to prove the Darboux theorem.

References

  • Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3. Graduate-level textbook on smooth manifolds.