Jump to content

Thompson uniqueness theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematical finite group theory, Thompson's original uniqueness theorem (Feit & Thompson 1963, theorems 24.5 and 25.2) states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. Bender (1970) gave a shorter proof of the uniqueness theorem.

References

  • Bender, Helmut (1970), "On the uniqueness theorem", Illinois Journal of Mathematics, 14 (3): 376–384, doi:10.1215/ijm/1256053074, ISSN 0019-2082, MR 0262351
  • Bender, Helmut; Glauberman, George (1994), Local analysis for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 188, Cambridge University Press, ISBN 978-0-521-45716-3, MR 1311244
  • Feit, Walter; Thompson, John G. (1963), "Solvability of groups of odd order", Pacific Journal of Mathematics, 13: 775–1029, doi:10.2140/pjm.1963.13.775, ISSN 0030-8730, MR 0166261