Jump to content

Tangent–secant theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Beginning with the alternate segment theorem,

In Euclidean geometry, the tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's Elements.

Given a secant g intersecting the circle at points G1 and G2 and a tangent t intersecting the circle at point T and given that g and t intersect at point P, the following equation holds:

The tangent-secant theorem can be proven using similar triangles (see graphic).

Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.

References

  • S. Gottwald: The VNR Concise Encyclopedia of Mathematics. Springer, 2012, ISBN 9789401169820, pp. 175-176
  • Michael L. O'Leary: Revolutions in Geometry. Wiley, 2010, ISBN 9780470591796, p. 161
  • Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008, ISBN 978-3-411-04208-1, pp. 415-417 (German)