Jump to content

Talk:Strict implication

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

(Jean KemperN (talk) 01:03, 18 February 2010 (UTC)][reply]

Short comment on the definition of strict implication given in the entry

I am not sure at all that the definition of strict implication as a material implication that is acted upon by the necessity operator from modal logic is sufficient and right. I invite the reader of these lines to read what I write in the article devoted by wikipedia to strict conditional and to peruse two papers to be found on the site http://www.grammar-and-logic.com: Traité de logique modale pour grammairiens et Les deux postulats du traité de logique modale. Both papers will be translated into English in a few weeks. L~(p & ~q) or ~ M (p & ~q) cannot by itself symbolize the strict implication of q by p. In effect, ~ M (p & ~q) It is im -possible to have p and ~q together is quite compatible with ~ M (p & q) It is im -possible to have p and q together.If one has ~ Mp , that is to say, if p is im-possible, it is im-possible to have p & q and it is also im-possible to have p & ~q.If ~ M p, then ~ M (p & q) & ~ M (p & ~q). Jean-François Monteil May 09


On strict implication : p ≡ Lq. Note concerning modal logic.

Certain linguists, for instance John Lyons, affirm that the formula of strict implication p => q has been found. According to them, p strictly implies q, if one can pose ~ M (p & ~q) It is im -possible to have p and ~q together So it is not. ~ M (p & ~q) cannot by itself symbolize the strict implication of q by p. In effect, ~ M (p & ~q) It is im -possible to have p and ~q together is quite compatible with ~ M (p & q) It is im -possible to have p and q together.If one has ~ Mp , that is to say, if p is im-possible, it is im-possible to have p & q and it is also im-possible to have p & ~q.If ~ M p, then ~ M (p & q) & ~ M (p & ~q).Of itself, the proposition ~ M (p & ~q) cannot represent the strict implication of q by p, cannot represent the causal relation between a cause p and its effect q in so far as the impossibility of p & ~ q may result from the fact that p is im-possible and not from the fact that p is the cause of its effect q. Hence, the necessity of adding the idea that p is possible to the content of ~ M (p & ~q), of adding Mp to ~ M (p & ~q). Hence, our formula of strict implication: ~ M (p & ~q) & Mp, which formula becomes p ≡ Lq p strictly implies q, if p is equivalent to the certainty of q.The developed form of p ≡ Lp is ( p & Lq) w (~ p & M~q ) One of two things: Either we have p and then certainly q or we have not p and in that case it is possible to have ~q. ( p & Lq) w (~p & M~q ), the developed form of p ≡ Lq, contains the two elements of ~ M (p & ~q) & Mp namely the idea that it is im-possible to have p and ~q on the one hand and the idea that p is possible on the other.In John Lyons (page 165, chapitre 6 Logical semantics, Semantics 1,Cambridge University Press, 1977), one can read:“Entailment can be defined in terms of poss and material implication as follows (19)(p => q) ≡ ~ poss (p &~q).That is to say, if p entails q, then it is not logically possible for both p to be true and not-q to be true and conversely…..” If I translate in my own terms, it reads “Strict implication can be defined in terms of possibility M and material implication as follows:19) (p => q) ≡ ~ M (p &~q). That is to say, if the fact p entails the fact q, if the fact p strictly implies the fact q, then it is not logically possible for the two facts p and not-q to coexist in reality and conversely if the facts p and not-q cannot coexist in reality, it means that the fact p entails the fact q, it means that the fact p strictly implies the fact q.” John Lyons is obviously wrong.Indeed, ~ M (p &~q) is a value implied by p => q the strict implication of q by p,but the converse is untrue for ~ M (p &~q) does not imply of itself p => q, does not imply our p ≡ Lq. ~M (p &~q) it is im-possible to have the conjunction of p and non-q is perfectly compatible,I repeat,with ~M (p & q) it is impossible to have the conjunction of p and q. In fact, when you have ~Mp, the impossibility of p, you have necessarily the conjunction of two impossibilities,for you can write

 ~M p ≡ ~M (p & q) & ~M (p &~q).

(84.100.243.153 (talk) 23:30, 10 May 2010 (UTC))[reply]