Jump to content

Talk:Lefschetz fixed-point theorem

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Lefschetz number

is defined arbitrarily for maps , then if we use the identity map we get is the intersection number of the diagonal with itself in the product manifold , i.e., the Euler characteristic. On the algebraic topological level I'm sure this holds too, that . Anyone know more about this? MotherFunctor 05:55, 28 May 2006 (UTC)[reply]

The connection is now explained.24.58.63.18 (talk) 19:07, 4 June 2009 (UTC)[reply]

References for the statements about Frobenius

it would be nice to have a reference (to look up proofs) for the statements about the Frobenius. --79.83.77.245 (talk) 00:49, 19 January 2010 (UTC)[reply]