Jump to content

Talk:Code (set theory)

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A definition easier to follow

There is probably nothing wrong in the article as it stands, but I want to change the beginning of it anyway. The reason is that I don't like when (for most people) nontrivial concepts are introduced in a single sentence and, in addition, the notation is introduced in nested "where-clauses" and "such-that-clauses"

I'll replace

In set theory, a code for a set
x
the notation standing for the hereditarily countable sets,
is a set
E ω×ω
such that there is an isomorphism between (ω,E) and (X,) where X is the transitive closure of {x}.

with this

In set theory a code of a set is defined as follows. Let be a hereditarily countable set, and let be the transitive closure of . Let as usual denote the set of natural numbers and let be the first uncountable cardinal number. In this notation we have . Also recall that denotes the relation of belonging in .
A code for is any set satisfying the following two properties:
1.) ω×ω
2.) There is an isomorphism between and .

if there are no objections.

YohanN7 (talk) 23:13, 6 June 2008 (UTC)[reply]