Jump to content

Talk:Biological network inference

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Untitled

I'd love to see this expanded upon. As a neurobiologist with no real programming experience, I've been struggling with how to turn tons of microarray expression data I have acquired into bonafide depictions of gene regulatory networks. I've tried several of the off-the-shelf programs with little luck. Reading the primary literature isn't getting me anywhere. 68.46.183.96 (talk) 20:22, 11 July 2008 (UTC)[reply]

move refs here

This is just a dump of articles with unclear relation to what's written in the article. Moving them here. Headbomb {ταλκκοντριβς – WP Physics} 20:21, 25 August 2009 (UTC)[reply]

  • Bansal, M; et al. (2007). "How to infer gene networks from expression profiles". Molecular Systems Biology. 3 (78). {{cite journal}}: Explicit use of et al. in: |author= (help)
  • Bansal, M; Gatta, GD; di Bernardo, D (2006). "Inference of gene regulatory networks and compound mode of action from time course gene expression profiles". Bioinformatics. 22 (7): 815–822. doi:10.1093/bioinformatics/btl003. PMID 16418235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Faith, JJ; et al. (2007). "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles". PLoS Biology. 5 (1): 54–66. doi:10.1371/journal.pbio.0050008. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: unflagged free DOI (link)
  • Barrett, Christian L. (2006). "Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach". PLoS Comput. Biol. 2 (5): e52. doi:10.1371/journal.pcbi.0020052.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Basso, Katia (2005). "Reverse engineering of regulatory networks in human B cells". Nat. Genet. 37 (4): 382–390. doi:10.1038/ng1532.
  • Bonneau, Richard (2006). "The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo". Genome Biology. 7 (5): R36. doi:10.1186/gb-2006-7-5-r36.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • "Context Likelihood or Relatedness (CLR) algorithm". Gardner Lab. 2006.
  • Chen, X.-w. (2006). "An effective structure learning method for constructing gene networks". Bioinformatics. 22 (11): 1367–1374. doi:10.1093/bioinformatics/btl090. PMID 16543279.
  • Chu, T. (2003). "A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays". Bioinformatics. 19 (9): 1147–1152. doi:10.1093/bioinformatics/btg011. PMID 12801876.
  • Cover, TM; Thomas, JA (1991). Elements of Information Theory. John Wiley & Sons.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Daub, Carsten O (2004). BMC Bioinformatics. 5: 118. doi:10.1186/1471-2105-5-118. {{cite journal}}: Missing or empty |title= (help)CS1 maint: unflagged free DOI (link)
  • de Jong, H (2002). "Modeling and simulation of genetic regulatory systems: a literature review". J Comput Biol. 9 (1): 67–103. doi:10.1089/10665270252833208.
  • de la Fuente, A; et al. (2004). "Discovery of meaningful associations in genomic data using partial correlation coefficients". Bioinformatics. 20 (18): 3565-3574. {{cite journal}}: Explicit use of et al. in: |author= (help)
  • Filkov, V (2005). "Identifying Gene Regulatory Networks from Gene Expression Data". Handbook of Computational Molecular Biology. Chapman & Hall / CRC Press.
  • Hartemink, AJ (2005). "Bayesian Network Inference with Java Objects (BANJO)". Duke University.
  • Hartemink, AJ (2005). "Reverse engineering gene regulatory networks". Nat. Biotech. 23 (5): 554–555. doi:10.1038/nbt0505-554.
  • Hecker, M; Lambeck, S; Toepfer, S; van Someren, E; Guthke, R (2009). "Gene Regulatory Network Inference - Data Integration in Dynamic Models - A Review". BioSystems. 96: 86–103. doi:10.1016/j.biosystems.2008.12.004.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Husmeier, D (2003). "Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks". Bioinformatics. 19 (17): 2271–2282. doi:10.1093/bioinformatics/btg313. PMID 14630656.
  • Ideker, T; Thorsson, V; Karp, RM (2000). "Discovery of regulatory interactions through perturbation: inference and experimental design". Pacific Symposium on Biocomputing.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Liang, S; Fuhrman, S; Somogyi, R (1998). "REVEAL: a general reverse engineering algorithm for inference of genetic network architectures". Pac. Symp. Biocomput. 3: 18–29.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Margolin, A.A., et al., Reverse engineering cellular networks. Nature Protocols, 2006. 1(2): p. 663-672. (full description of ARACNE algorithm)
  • Margolin, A.A., et al., ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 2006. 7(Suppl1): p. S1-7.
  • Markowetz, F. A bibliography on learning causal networks of gene interactions (July 31, 2006).[available from: http://www.molgen.mpg.de/~markowet/doc/network-bib.pdf; http://genomics.princeton.edu/~florian/docs/network-bib.pdf]
  • Meyer P.E., Kontos K., Lafitte F., Bontempi G. Information-Theoretic Inference of Large Transcriptional Regulatory Networks [available from: http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/79879]
  • Papin, J.A., et al., Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol., 2005. 6(2): p. 99-111.
  • Pe'er, D., et al., Inferring subnetworks from perturbed expression profiles. Bioinformatics, 2001. 17: p. 215S-224S.
  • Pe'er, D. Bayesian Network Analysis of Signaling Networks: A Primer. Science STKE 2005 [on-line primer]. Available from: www.stke.org/content/full/sigtrans.
  • Perrin, B.E., et al., Gene networks inference using dynamic Bayesian networks. Bioinformatics, 2003. 19(S2): p. ii138-ii148.
  • Sachs, K., et al., Causal protein-signaling networks derived from multiparameter single-cell data. Science, 2005. 308: p. 523-529.
  • Schadt, E.E., et al., An integrative genomics approach to infer causal associations between gene expressiona and disease. Nat. Genet., 2005. 37(7): p. 710-717.
  • Segal, E., R. Yelensky, and D. Koller, Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 2003. 19(Suppl1): p. i264-272.
  • Segal, E., et al., Rich probabilistic models for gene expression. Bioinformatics, 2001. 17(Suppl1): p. S243-252.
  • Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003. 13(11): p. 2498-504.
  • Singhal, M. and K. Domico, CABIN: Collective Analysis of Biological Interaction Networks. Journal of Computational Biology and Chemistry, (accepted for publication in 2007)
  • Taylor, R.C., et al., SEBINI: Software Environment for BIological Network Inference. Bioinformatics, 2006. 21: p. 2706-2708.
  • Troyanskaya, O.G., et al., A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. USA, 2003. 100: p. 8348-8353.
  • van Someren, E.P., et al., Genetic network modeling. Pharmacogenomics, 2002. 3(4): p. 507-25.
  • Weaver, D.C., C.T. Workman, and G.D. Stromo, Modeling regulatory networks with weight matrices. Pac. Symp. Biocomput., 1999.
  • Werhli, A.V., M. Grezegorczyk, and D. Husmeier, Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics, 2006. 22(20): p. 2523-2531.
  • Wessels, L.F., E.P. van Someren, and M.J. Reinders, A comparison of genetic network models. Pac. Symp. Biocomput., 2001.
  • Yu, H., et al., Advances to bayesian network inference for generating causal networks form observational biological data. Bioinformatics, 2004. 20: p. 3594-3603.
  • Zhao, W., E. Serpedin, and E.R. Dougherty, Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 2006. 22(17): p. 2129-35.
  • Zhou, X., et al., A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics, 2004. 20(17): p. 2918-27.
  • Zou, M. and S.D. Conzen, A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course data. Bioinformatics, 2005. 21(1): p. 71-79.

Co-relation-based inference algorithms

{{cleanup-jargon|date = January 2008}}

1) from classical statistics - STUB

2) from information theory - STUB

  • Concept of mutual information
  • ARACNE algorithm
  • CLR algorithm
  • MRNET algorithm

3) from graphical probabilistic models - STUB

  • Bayesian network structure learning
  • K2 alg - needs a node ordering
  • BANJO toolkit

DREAM project - stub

Platforms for network inference - STUB

  • geWorkbench, Columbia
  • SEBINI

Visualization of inferred network - STUB

Expansion of inferred network using public databases - data integration - STUB

  • CABIN tool

Changes 5/5/2022

This expansion is for CS4364. Please refrain from any changes until 5/13/2022 for grading purposes, thank you. — Preceding unsigned comment added by ErgoFoxy (talkcontribs) 19:47, 5 May 2022 (UTC)[reply]