Jump to content

Table of polyhedron dihedral angles

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The dihedral angles for the edge-transitive polyhedra are:

Picture Name Schläfli
symbol
Vertex/Face
configuration
exact dihedral angle
(radians)
dihedral angle
– exact in bold,
else approximate
(degrees)
Platonic solids (regular convex)
Tetrahedron {3,3} (3.3.3) 70.529°
Hexahedron or Cube {4,3} (4.4.4) 90°
Octahedron {3,4} (3.3.3.3) 109.471°
Dodecahedron {5,3} (5.5.5) 116.565°
Icosahedron {3,5} (3.3.3.3.3) 138.190°
Kepler–Poinsot polyhedra (regular nonconvex)
Small stellated dodecahedron {5/2,5} (5/2.5/2.5/2.5/2.5/2) 116.565°
Great dodecahedron {5,5/2} (5.5.5.5.5)/2 63.435°
Great stellated dodecahedron {5/2,3} (5/2.5/2.5/2) 63.435°
Great icosahedron {3,5/2} (3.3.3.3.3)/2 41.810°
Quasiregular polyhedra (Rectified regular)
Tetratetrahedron r{3,3} (3.3.3.3) 109.471°
Cuboctahedron r{3,4} (3.4.3.4) 125.264°
Icosidodecahedron r{3,5} (3.5.3.5) 142.623°
Dodecadodecahedron r{5/2,5} (5.5/2.5.5/2) 116.565°
Great icosidodecahedron r{5/2,3} (3.5/2.3.5/2) 37.377°
Ditrigonal polyhedra
Small ditrigonal icosidodecahedron a{5,3} (3.5/2.3.5/2.3.5/2) 142.623°
Ditrigonal dodecadodecahedron b{5,5/2} (5.5/3.5.5/3.5.5/3) 63.435°
Great ditrigonal icosidodecahedron c{3,5/2} (3.5.3.5.3.5)/2 79.188°
Hemipolyhedra
Tetrahemihexahedron o{3,3} (3.4.3/2.4) 54.736°
Cubohemioctahedron o{3,4} (4.6.4/3.6) 54.736°
Octahemioctahedron o{4,3} (3.6.3/2.6) 70.529°
Small dodecahemidodecahedron o{3,5} (5.10.5/4.10) 26.058°
Small icosihemidodecahedron o{5,3} (3.10.3/2.10) 116.565°
Great dodecahemicosahedron o{5/2,5} (5.6.5/4.6) 37.377°
Small dodecahemicosahedron o{5,5/2} (5/2.6.5/3.6) 79.188°
Great icosihemidodecahedron o{5/2,3} (3.10/3.3/2.10/3) 37.377°
Great dodecahemidodecahedron o{3,5/2} (5/2.10/3.5/3.10/3) 63.435°
Quasiregular dual solids
Rhombic hexahedron
(Dual of tetratetrahedron)
V(3.3.3.3) 90°
Rhombic dodecahedron
(Dual of cuboctahedron)
V(3.4.3.4) 120°
Rhombic triacontahedron
(Dual of icosidodecahedron)
V(3.5.3.5) 144°
Medial rhombic triacontahedron
(Dual of dodecadodecahedron)
V(5.5/2.5.5/2) 120°
Great rhombic triacontahedron
(Dual of great icosidodecahedron)
V(3.5/2.3.5/2) 72°
Duals of the ditrigonal polyhedra
Small triambic icosahedron
(Dual of small ditrigonal icosidodecahedron)
V(3.5/2.3.5/2.3.5/2) 109.471°
Medial triambic icosahedron
(Dual of ditrigonal dodecadodecahedron)
V(5.5/3.5.5/3.5.5/3) 109.471°
Great triambic icosahedron
(Dual of great ditrigonal icosidodecahedron)
V(3.5.3.5.3.5)/2 109.471°
Duals of the hemipolyhedra
Tetrahemihexacron
(Dual of tetrahemihexahedron)
V(3.4.3/2.4) 90°
Hexahemioctacron
(Dual of cubohemioctahedron)
V(4.6.4/3.6) 120°
Octahemioctacron
(Dual of octahemioctahedron)
V(3.6.3/2.6) 120°
Small dodecahemidodecacron
(Dual of small dodecahemidodecacron)
V(5.10.5/4.10) 144°
Small icosihemidodecacron
(Dual of small icosihemidodecacron)
V(3.10.3/2.10) 144°
Great dodecahemicosacron
(Dual of great dodecahemicosahedron)
V(5.6.5/4.6) 120°
Small dodecahemicosacron
(Dual of small dodecahemicosahedron)
V(5/2.6.5/3.6) 120°
Great icosihemidodecacron
(Dual of great icosihemidodecacron)
V(3.10/3.3/2.10/3) 72°
Great dodecahemidodecacron
(Dual of great dodecahemidodecacron)
V(5/2.10/3.5/3.10/3) 72°

References

  • Coxeter, Regular Polytopes (1963), Macmillan Company
    • Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra {p,q} in ordinary space)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-7 to 3-9)
  • Weisstein, Eric W. "Uniform Polyhedron". MathWorld.