Jump to content

System of parameters

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a system of parameters for a local Noetherian ring of Krull dimension d with maximal ideal m is a set of elements x1, ..., xd that satisfies any of the following equivalent conditions:

  1. m is a minimal prime over (x1, ..., xd).
  2. The radical of (x1, ..., xd) is m.
  3. Some power of m is contained in (x1, ..., xd).
  4. (x1, ..., xd) is m-primary.

Every local Noetherian ring admits a system of parameters.[1]

It is not possible for fewer than d elements to generate an ideal whose radical is m because then the dimension of R would be less than d.

If M is a k-dimensional module over a local ring, then x1, ..., xk is a system of parameters for M if the length of M / (x1, ..., xk) M is finite.

General references

  • Atiyah, Michael Francis; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., MR 0242802

References

  1. ^ "Math 711: Lecture of September 5, 2007" (PDF). University of Michigan. September 5, 2007. Retrieved May 31, 2022.