Jump to content

Sublime number

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In number theory, a sublime number is a positive integer which has a perfect number of positive factors (including itself), and whose positive factors add up to another perfect number.[1]

The number 12, for example, is a sublime number. It has a perfect number of positive factors (6): 1, 2, 3, 4, 6, and 12, and the sum of these is again a perfect number: 1 + 2 + 3 + 4 + 6 + 12 = 28.

As of May 2025, there are only two known sublime numbers: 12 and (2126)(261 − 1)(231 − 1)(219 − 1)(27 − 1)(25 − 1)(23 − 1) (sequence A081357 in the OEIS).[2] The second of these has 76 decimal digits:

6,086,555,670,238,378,989,670,371,734,243,169,622,657,830,773,351,885,970,528,324,860,512,791,691,264.

References

  1. ^ MathPages article, "Sublime Numbers".
  2. ^ Clifford A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning New York: Oxford University Press (2003): 215