Jump to content

Canonical map

From Wikipedia, the free encyclopedia
(Redirected from Structure morphism)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a canonical map, also called a natural map, is a map or morphism between objects that arises naturally from the definition or the construction of the objects. Often, it is a map which preserves the widest amount of structure. A choice of a canonical map sometimes depends on a convention (e.g., a sign convention).

A closely related notion is a structure map or structure morphism; the map or morphism that comes with the given structure on the object. These are also sometimes called canonical maps.

A canonical isomorphism is a canonical map that is also an isomorphism (i.e., invertible). In some contexts, it might be necessary to address an issue of choices of canonical maps or canonical isomorphisms; for a typical example, see prestack.

For a discussion of the problem of defining a canonical map see Kevin Buzzard's talk at the 2022 Grothendieck conference.[1]

Examples

See also

References

  1. ^ Buzzard, Kevin (21 June 2022). "Grothendieck Conference Talk". YouTube.
  2. ^ Vialar, Thierry (2016-12-07). Handbook of Mathematics. BoD - Books on Demand. p. 274. ISBN 9782955199008.