Jump to content

Strongly embedded subgroup

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In finite group theory, an area of abstract algebra, a strongly embedded subgroup of a finite group G is a proper subgroup H of even order such that H ∩ Hg has odd order whenever g is not in H. The Bender–Suzuki theorem, proved by Bender (1971) extending work of Suzuki (1962, 1964), classifies the groups G with a strongly embedded subgroup H. It states that either

  1. G has cyclic or generalized quaternion Sylow 2-subgroups and H contains the centralizer of an involution
  2. or G/O(G) has a normal subgroup of odd index isomorphic to one of the simple groups PSL2(q), Sz(q) or PSU3(q) where q≥4 is a power of 2 and H is O(G)NG(S) for some Sylow 2-subgroup S.

Peterfalvi (2000, part II) revised Suzuki's part of the proof.

Aschbacher (1974) extended Bender's classification to groups with a proper 2-generated core.

References

  • Aschbacher, Michael (1974), "Finite groups with a proper 2-generated core", Transactions of the American Mathematical Society, 197: 87–112, doi:10.2307/1996929, ISSN 0002-9947, JSTOR 1996929, MR 0364427
  • Bender, Helmut (1971), "Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläβt", Journal of Algebra, 17: 527–554, doi:10.1016/0021-8693(71)90008-1, ISSN 0021-8693, MR 0288172
  • Peterfalvi, Thomas (2000), Character theory for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 272, Cambridge University Press, ISBN 978-0-521-64660-4, MR 1747393
  • Suzuki, Michio (1962), "On a class of doubly transitive groups", Annals of Mathematics, Second Series, 75: 105–145, doi:10.2307/1970423, hdl:2027/mdp.39015095249804, ISSN 0003-486X, JSTOR 1970423, MR 0136646
  • Suzuki, Michio (1964), "On a class of doubly transitive groups. II", Annals of Mathematics, Second Series, 79: 514–589, doi:10.2307/1970408, ISSN 0003-486X, JSTOR 1970408, MR 0162840