Jump to content

Strong partition cardinal

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In Zermelo–Fraenkel set theory without the axiom of choice, a strong partition cardinal is an uncountable well-ordered cardinal such that every partition of the set of size subsets of into less than pieces has a homogeneous set of size .

The existence of strong partition cardinals contradicts the axiom of choice. The axiom of determinacy implies that ℵ1 is a strong partition cardinal.

References

  • Henle, James M.; Kleinberg, Eugene M.; Watro, Ronald J. (1984), "On the ultrafilters and ultrapowers of strong partition cardinals", Journal of Symbolic Logic, 49 (4): 1268–1272, doi:10.2307/2274277, JSTOR 2274277, S2CID 45989875
  • Apter, Arthur W.; Henle, James M.; Jackson, Stephen C. (1999), "The calculus of partition sequences, changing cofinalities, and a question of Woodin", Transactions of the American Mathematical Society, 352 (3): 969–1003, doi:10.1090/S0002-9947-99-02554-4, JSTOR 118097, MR 1695015.