Jump to content

Strict initial object

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In the mathematical discipline of category theory, a strict initial object is an initial object 0 of a category C with the property that every morphism in C with codomain 0 is an isomorphism. In a Cartesian closed category, every initial object is strict.[1] Also, if C is a distributive or extensive category, then the initial object 0 of C is strict.[2]

References

  1. ^ McLarty, Colin (4 June 1992). Elementary Categories, Elementary Toposes. Clarendon Press. ISBN 0191589497. Retrieved 13 February 2017.
  2. ^ Carboni, Aurelio; Lack, Stephen; Walters, R.F.C. (3 February 1993). "Introduction to extensive and distributive categories". Journal of Pure and Applied Algebra. 84 (2): 145–158. doi:10.1016/0022-4049(93)90035-R.