Jump to content

Standard L-function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the term standard L-function refers to a particular type of automorphic L-function described by Robert P. Langlands.[1][2] Here, standard refers to the finite-dimensional representation r being the standard representation of the L-group as a matrix group.

Relations to other L-functions

Standard L-functions are thought to be the most general type of L-function. Conjecturally, they include all examples of L-functions, and in particular are expected to coincide with the Selberg class. Furthermore, all L-functions over arbitrary number fields are widely thought to be instances of standard L-functions for the general linear group GL(n) over the rational numbers Q. This makes them a useful testing ground for statements about L-functions, since it sometimes affords structure from the theory of automorphic forms.

Analytic properties

These L-functions were proven to always be entire by Roger Godement and Hervé Jacquet,[3] with the sole exception of Riemann ζ-function, which arises for n = 1. Another proof was later given by Freydoon Shahidi using the Langlands–Shahidi method. For a broader discussion, see Gelbart & Shahidi (1988).[4]

See also

References

  1. ^ Langlands, R.P. (1978), L-Functions and Automorphic Representations (ICM report at Helsinki) (PDF).
  2. ^ Borel, A. (1979), "Automorphic L-functions", Automorphic forms, representations and L-functions (Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., vol. XXXIII, Providence, R.I.: Amer. Math. Soc., pp. 27–61, MR 0546608.
  3. ^ Godement, Roger; Jacquet, Hervé (1972), Zeta functions of simple algebras, Lecture Notes in Mathematics, vol. 260, Berlin-New York: Springer-Verlag, MR 0342495.
  4. ^ Gelbart, Stephen; Shahidi, Freydoon (1988), Analytic properties of automorphic L-functions, Perspectives in Mathematics, vol. 6, Boston, MA: Academic Press, Inc., ISBN 0-12-279175-4, MR 0951897.