Jump to content

Small control property

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

For applied mathematics, in nonlinear control theory, a non-linear system of the form is said to satisfy the small control property if for every there exists a so that for all there exists a so that the time derivative of the system's Lyapunov function is negative definite at that point.

In other words, even if the control input is arbitrarily small, a starting configuration close enough to the origin of the system can be found that is asymptotically stabilizable by such an input.

References