Jump to content

Semi-orthogonal matrix

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of columns exceeds the number of rows, then the rows are orthonormal vectors; but if the number of rows exceeds the number of columns, then the columns are orthonormal vectors.

Equivalently, a non-square matrix A is semi-orthogonal if either

[1][2][3]

In the following, consider the case where A is an m × n matrix for m > n. Then

The fact that implies the isometry property

for all x in Rn.

For example, is a semi-orthogonal matrix.

A semi-orthogonal matrix A is semi-unitary (either AA = I or AA = I) and either left-invertible or right-invertible (left-invertible if it has more rows than columns, otherwise right invertible). As a linear transformation applied from the left, a semi-orthogonal matrix with more rows than columns preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection.

References

  1. ^ Abadir, K.M., Magnus, J.R. (2005). Matrix Algebra. Cambridge University Press.
  2. ^ Zhang, Xian-Da. (2017). Matrix analysis and applications. Cambridge University Press.
  3. ^ Povey, Daniel, et al. (2018). "Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks." Interspeech.