Jump to content

Segment addition postulate

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In geometry, the segment addition postulate states that given 2 points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC. This is related to the triangle inequality, which states that AB + BC AC with equality if and only if A, B, and C are collinear (on the same line). This in turn is equivalent to the proposition that the shortest distance between two points lies on a straight line.

The segment addition postulate is often useful in proving results on the congruence of segments.