Jump to content

Quasitriangular Hopf algebra

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a Hopf algebra, H, is quasitriangular[1] if there exists an invertible element, R, of such that

  • for all , where is the coproduct on H, and the linear map is given by ,
  • ,
  • ,

where , , and , where , , and , are algebra morphisms determined by

R is called the R-matrix.

As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang–Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity, ; moreover , , and . One may further show that the antipode S must be a linear isomorphism, and thus S2 is an automorphism. In fact, S2 is given by conjugating by an invertible element: where (cf. Ribbon Hopf algebras).

It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction.

If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding

.

Twisting

The property of being a quasi-triangular Hopf algebra is preserved by twisting via an invertible element such that and satisfying the cocycle condition

Furthermore, is invertible and the twisted antipode is given by , with the twisted comultiplication, R-matrix and co-unit change according to those defined for the quasi-triangular quasi-Hopf algebra. Such a twist is known as an admissible (or Drinfeld) twist.

See also

Notes

  1. ^ Montgomery & Schneider (2002), p. 72.

References

  • Montgomery, Susan (1993). Hopf algebras and their actions on rings. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. ISBN 0-8218-0738-2. Zbl 0793.16029.
  • Montgomery, Susan; Schneider, Hans-Jürgen (2002). New directions in Hopf algebras. Mathematical Sciences Research Institute Publications. Vol. 43. Cambridge University Press. ISBN 978-0-521-81512-3. Zbl 0990.00022.